老是容易把先验概率,后验概率,似然概率混淆,所以下面记录下来以备日后查阅。区分他们最基本的方法就是看定义,定义取自维基百科和百度百科:先验概率百度百科定义:先验概率(prior probability)是指根据以往经验和分析得到的概率,如全概率公式,它往往作为"由因求果"问题中的"因"出现的概率。维基百科定义: 在贝叶斯统计中,某一不确定量p的先验概率分布是在考虑"观测数据"前,能表达p不确定性的
原创
2021-05-20 23:57:00
2063阅读
老是容易把先验概率,后验概率,似然概率混淆,所以下面记录下来以备日后查阅。区分他们最基本的方法就是看定义,定义取自维基百科和百度百科:先验概率百度百科定义:先验概率(prior probability)是指根据以往经验和分析得到的概率,如全概率公式,它往往作为"由因求果"问题中的"因"出现的概率。维基百科定义: 在贝叶斯统计中,某一不确定量p的先验概率分布是在考虑"观测数据"前,能表达p不确定性的概率分布。可以看到二者定义有一个共同点,即先验概率是不依靠观测数据的概率分布,也就是与其他...
转载
2021-06-08 16:26:20
2269阅读
一、什么叫先验分布、后验分布、似然估计 这几个概念可以用“原因的可能性”和“结果的可能性”的“先后顺序”及“条件关系”来理解。下面举例: 隔壁老王要去10公里外的一个地方办事,他可以选择走路,骑自行车或者开车,并花费了一定时间到达目的地。在这个事件中,可以把交通方式(走路、骑车或开车)认为是原因,花费的时间认为是结果。 、
原创
2023-01-17 14:53:53
295阅读
先验概率:即一开始由统计得到的客观概率后验概率:由数据样本和先验概率推测得到的概率举个例子:玩英雄联盟占到中国总人口的60%,不玩英雄联盟的人数占到40%:为了便于数学叙述,这里我们用变量X来表示取值情况,根据概率的定义以及加法原则,我们可以写出如下表达式:P(X=玩lol)=0.6;P(X=不玩lol)=0.4,这个概率是统计得到的,即X的概率分布已知,我们称其为先验概率(prior proba
转载
2019-07-11 01:09:00
172阅读
2评论
先验概率、最大似然估计、贝叶斯估计、最大后验概率 一、总结 一句话总结: 1、先验概率和后验概率? P(A|B)=P(B|A)*P(A)/P(B) P(A)是A的先验概率或边缘概率,称作"先验"是因为它不考虑B因素。 P(A|B)是已知B发生后A的条件概率,也称作A的后验概率。 P(B|A)是已知A
转载
2020-11-08 23:41:00
2250阅读
2评论
1 逻辑回归与多分类我们已经知道,普通的logistic回归只能针对二分类(Binary Classification)问题,要想实现多个类别的分类,我们必须要改进logistic回归,让其适应多分类问题。关于这种改进,有两种方式可以做到。第一种方式是直接根据每个类别,都建立一个二分类器,带有这个类别的样本标记为1,带有其他类别的样本标记为0。假如我们有k个类别,最后我们就得到了k个
摘要最大似然估计(Maximum Likelihood Estimation)与最大后验估计(Maximum A Posteriori)是机器学习中最常用的两种点估计参数估计方法. 最大似然估计以最大化观测数据集上的似然度为目标, 强调从观测数据集上拟合出产生观测数据集的分布, 常用的交叉熵损失(cross entropy loss)、 均方误差损失(Mean Square Erro
# 机器学习中的先验与后验
## 介绍
机器学习是现代数据科学的重要领域,而理解先验和后验是掌握概率模型的关键。本篇文章将逐步教会你如何在机器学习中实现先验和后验的概念。我们将从基本的流程谈起,逐步深入具体的代码实现。
### 流程概述
以下是实现机器学习中先验与后验的基本流程:
| 步骤 | 描述
似然“似然”是对likelihood 的一种较为贴近文言文的翻译.“似然”用现代的中文来说即“可能性”。 似然函数设总体X服从分布P(x;θ)(当X是连
原创
2023-11-07 14:03:54
158阅读
何为:最大似然估计(MLE): 最大似然估计提供了一种给定观察数据来评估模型参数的方法,即:“模型已定,参数未知”。可以通过采样,获取部分数据,然后通过最大似然估计来获取已知模型的参数。 最大似然估计是一种统计方法,它用来求一个样本集的相关概率密度函数的参数。利用已知的样本结果,反推最有可能(最大概
转载
2018-01-14 19:31:00
527阅读
2评论
机器学习基础文章目录机器学习基础1. 概率和统计2. 先验概率(由历史求因)3. 后验概率(知果求因)4. 似然函
先验(A priori;又译:先天)在拉丁文中指“来自先前的东西”,或稍稍引申指“在经验之前”。近代西方传统中,认为先验指无需经验或先于经验获得的知识。它通常与后验知识相比较,后验意指“在经验之后”,需要经验。这一区分来自于中世纪逻辑所区分的两种论证,从原因到结果的论证称为“先验的”,而从结果到原因的论证称为“后验的”。先验概率是指根据以往经验和分析得到的概率,如全概率公式 中的,它往往作为“由因
原文链接:http://tecdat.cn/?p=24191原文出处:拓端数据部落公众号在这篇文章中,我将集中讨论一个给定一个短数据序列的推断概率的例子。我将首先介绍如何用贝叶斯方法进行期望推理的理论,然后在 Python 中实现该理论,以便我们能够处理这些想法。
原创
2021-11-13 10:27:49
7781阅读
I . 拼写纠正 简介II . 拼写纠正 案例需求III . 计算每个假设的概率IV . 引入 贝叶斯公式V . 使用贝叶斯公式计算每个假设的概率VI . 比较每个假设概率时 P(D)P(D) 分母可忽略VIII . 先验概率 , 似然概率 与 后验概率
原创
2022-03-09 10:13:23
203阅读