数据建模_51CTO博客
问题导读: 1、为什么需要数据建模? 2、OLTP 和 OLAP 系统有什么区别? 3、数仓设计主要分哪几个步骤? 4、星型模型、雪花模型、星座模型如何理解? 一、为什么需要数据建模?在开始今天的话题之前,我们不妨思考下,到底为什么需要进行数据建模?随着从IT时代到DT时代的跨越,数据开始出现爆发式的增长,这当中产生的价值也是不言而喻。如何将这些数据进行有序、有结构地分类组织存储,是我们
在这篇文章中,你将会学到如何一步步地进行维度数据建模,你将看到如何在真实的场景中使用维度模型。 什么是维度数据建模维度数据建模是在进行数仓设计时的一种数据建模方法。这种建模方法的主要目标是为了提高数据检索效率,对select查询操作进行了优化。维度数据建模最适合数仓星型模型和雪花模型。数仓中的维度数据建模不同于ER建模(Entity-Relationship Model,关系-实体模型)
1前言 数据建模乍一听的时候感觉非常的有技术性,并且外行感觉非常的高大上,高深莫测。 在目前的时代下,数据量可以说是海量,并且还在持续增长,那么对于企业来说,如何快速的准确的从这些数据中获取自己想得到的信息呢?2什么是数据建模 数据建模简单来说就是基于对业务的理解,将各种数据进行整合和关联,并最终使得这些数据可用性,可读性增强,让使用方能快速的获取到自己关心的有价值的信息并且及时的作出响应,为公司
Kimball小组为采用维度方式建模数据定义了完整的技术集合;Kimball技术已经被业界所接受,成为最佳实践。一、维度建模设计过程维度建模应该是有主题专家与企业数据管理代表合作设计完成,工作有数据建模这负责,但是模型应该通过与业务代表开展一系列高级别讨论获得。 维度建模需要考虑业务需求以及协作建模阶段设计的底层数据源;按照业务过程、粒度、维度、事实声明的流程,设计组确定表名和列名、示例领域值以及
数据在当今世界意味着金钱,随着向基于App的世界的过渡,数据呈指数增长。今天给大家介绍6个开源数据挖掘工具,有需要的朋友可以自取,有更好用的工具也欢迎交流。1、DataMeltDataMelt或DMelt是数据分析和数据可视化的开源软件,可用于数值计算、数学、统计、符号计算等。该平台是Python、Ruby、Groovy等各种脚本语言的组合,还有其他Java软件包。它能够制作高质量的矢量
转载 2023-06-06 21:39:13
181阅读
数据挖掘实战章节1 课时2定义Data mining, DM大量的数据中,通过统计学、人工智能、机器学习等方法挖掘出未知的、且有价值的信息和知识的过程。案例:啤酒与尿布可视化算法数据库机器学习统计学市场营销其他学科数据挖掘工程师往往是熟悉和理解业务的人数据挖掘 VS 数据分析分析重统计,挖掘偏预测分析[现状、原因、预测]挖掘[分类、聚类、关联、预测]分析[对比、分组、交叉、回归]挖掘[决策树、
1.1 数据挖掘的定义本质概念:用最强大的硬件、最强大的编程系统和最高效的算法’来解决科学、商业、医疗健康、政府、人文以及众多人类努力探索的其他领域中的问题。1.1.1 建模对很多人而言’数据挖掘是从数据建模型的过程’而该过程通常利用机器学习来实现。但是更一般地来说数据挖掘的目标是算法。当然,在很多重要的应用中,建模是难点所在。—旦模型建好,那么使用该模型的算法就直截了当了。1.1.2 统计建模
数据建模是一种用于定义和分析数据的要求和其需要的相应支持的信息系统的过程。 随着前端页面的交互变得更加细腻复杂,原本存放于服务端的状态放置在了前端,类似 flux、redux、mobx、dva、rematch、vuex 的状态管理库也成了每个项目的标配。 因为分层理念的普及,前端工程师们需要把更多精
转载 2021-05-06 10:31:00
302阅读
2评论
数据建模指的是对现实世界各类数据的抽象组织,确定数据库需管辖的范围、数据的组织形式等直至转化成现实的数据库。 将经过系统分析后抽象出来的概念​​模型​​转化为物理模型后,在visio或erwin等工具建立数据库实体以及各实体之间关系的过程(实体一般是表)。在软件工程中,数据建模是运用正式的数据建模技术,建立信息系统的数据模型的过程。基本介绍数据建模是一种用于定义和分析数据的要求和其需要的相应支持的
原创 2022-12-03 16:28:03
269阅读
3点赞
Python数据分析Python基础常用操作符算术操作符:赋值操作符比较操作符逻辑操作符其他运算符变量和赋值数据类型和转换print()函数条件语句if语句assert 关键词循环语句for循环range()函数enumerate()函数其他语句异常处理Python标准异常总结Python标准警告总结try-except语句try - except - finally 语句try-except-
转载 2023-06-19 17:46:20
143阅读
数据建模与业务建模无论是企业信息系统还是web网站,各种大小程序的原始功能都是对数据的操作,可以看做是某一群体对一些数据的各种需求造就了一个又一个的程序,或者说是软件系统。回头想想,第一刻起我们就开始和数据打交道了,新项目开始的时候我们先要做什么呢?用第三方依赖搭个框架,设计目录结构吗?不对,这些都是技术储备,应该是在项目启动之前就完成的了。项目启动的一刻我们在做的工作总是对数据的分析。我们要分析
1.数据仓库 1.1 什么是数据仓库 数据仓库,英文名为Data Warehouse,简写为DW或DWH。数据仓库,是一个面向主题的、集成的、随时间变化的、但信息本身相对稳定的数据集合,用于对管理决策过程的支持[1]。它是单个数据存储,出于分析性报告和决策支持目的而创建。为需要业务智能的企业,提供指导业务流程改进、监视时间、成本、质量以及控制[2]。1.2 数据仓库的四个特点 面向主题:数据仓库是
本节书摘来自华章出版社《Python数据分析与挖掘实战》一书中的第1章,第1.4节,作者 张良均 王路 谭立云 苏剑林,更多章节内容可以访问云栖社区“华章计算机”公众号查看1.4 数据挖掘建模过程从本节开始,将以餐饮行业的数据挖掘应用为例来详细介绍数据挖掘的建模过程,如图1-1所示。1.4.1 定义挖掘目标针对具体的数据挖掘应用需求,首先要明确本次的挖掘目标是什么?系统完成后能达到什么样的效果?因
大家晚上好,我是新来的实习生小模君,前几天小智老师给我科普了数据挖掘的基础知识,颇有收获,于是就趁小天今天有事休假冒个泡跟大家分享一番。数据挖掘,英文名叫Data mining,一般是指从大型数据库中将隐藏的预测信息抽取出来的过程,而更为精确的解释则是“从数据中挖掘知识”。这个概念乍眼一看有点懵,毕竟从数据中挖掘出知识的说法是小模君以前没有接触过的。因此小智老师只好举个栗子解释:假如某东需要预测用
转载 2023-07-20 12:46:47
42阅读
泰迪智能科技(数据挖掘平台:TipDM数据挖掘平台)最新推出的数据挖掘实战专栏专栏将数据挖掘理论与项目案例实践相结合,可以让大家获得真实的数据挖掘学习与实践环境,更快、更好的学习数据挖掘知识与积累职业经验专栏中每四篇文章为一个完整的数据挖掘案例。案例介绍顺序为:先由数据案例背景提出挖掘目标,再阐述分析方法与过程,最后完成模型构建,在介绍建模过程中同时穿插操作训练,把相关的知识点嵌入相应的操作过程中
第1课 数据科学与数学基础知识点1:数据挖掘基础,微积分、概率论、线性代数基础实战项目:用numpy进行矩阵运算第2课 数据处理/分析/可视化知识点1:数据获取、数据格式、数据内容处理与分析、数据的可视化实战项目:用python解析和清洗数据,pandas统计与分析数据,matplotlib和seaborn等做可视化第3课 海量数据的分布式处理知识点1:hadoop,Spark介绍,Map Red
挖掘建模根据挖掘目标和数据形式可建立:分类与预测、聚类分析、关联规则、时序模式、偏差检测等模型1.分类与预测分类与预测是预测问题的两种主要类型,分类主要是:预测分类标号(离散属性);预测主要是:建立连续值函数模型,预测给定自变量对应的因变量的值。1.1 实现过程(1)分类  分类是构造一个分类模型,输入样本属性值,输出对应类别,将每个样本映射到预先定义好的类别。  分类模型,建立在已有类标记的数据
本人之前一直使用PowerDesigner作为建模工具,MAC下一直使用虚拟机操作,非常不方便,无意间发现一款非常漂亮的开源建模工具PDMan,在此和大家分享。码云地址:PDMan-国产免费通用数据建模工具(极简,漂亮)官网地址:PDMan-国产免费通用数据建模工具(极简,漂亮)PDMan官方介绍PDMan是由国内知名金融IT上市公司,内部研发团队设计的一款面向数据库模型建模的软件,是Powe
转载 2023-06-06 21:48:52
66阅读
数据挖掘任务分为:模式挖掘、描述建模、预测建模。上面有一篇文章讲的是Apriori算法,用于数据挖掘的第一个任务模式挖掘。本文介绍数据挖掘在预测建模上的应用。预测建模是指根据现有数据先建立一个模型,然后应用这个模型来对未来的数据进行预测。1、概念1.1 Classification和PredictionClassification主要用于对离散的数据进行预测,分为两步:首先根据训练集,构照分类模型
第十三章 Python建模库介绍1、pandas与模型代码的接口2、用Patsy创建模型描述2.1、Patsy创建模型设计矩阵2.2、用Patsy公式进行数据转换2.3、分类数据和Patsy3、statsmodels介绍3.1、估计线性模型3.2、估计时间序列过程4、scikit-learn介绍交叉验证5、继续学习 主要内容: pandas数据规整和模型拟合和评分 介绍两个流行的建模工具,
转载 2023-06-06 21:55:31
226阅读
  • 1
  • 2
  • 3
  • 4
  • 5