时序预测 | MATLAB实现基于QPSO-LSTM、PSO-LSTM、LSTM时间序列预测
原创
2024-03-12 11:07:24
326阅读
回归预测 | MATLAB实现基于QPSO-LSTM、PSO-LSTM、LSTM多输入单输出回归预测
原创
2024-03-12 11:20:24
170阅读
看 Python 量化金融投资,摘录的一些统计函数。为了以后更好的查找。 优化问题优化问题无约束优化Nelder-Mead 单纯形法Broyden-Fletcher-Goldfarb-Shanno牛顿共轭梯度法有约束优化问题CVXOPT 解 二次规划问题投资组合中的应用 import numpy as np
import scipy.optimize as opt优化问题这里讨论的问题全部是凸优化
转载
2024-02-10 20:54:59
66阅读
快速梳理LSTM(Long Short-Term Memory)长短期记忆人工神经网络是对RNN的一种改进,可以有效解决RNN存在的长期依赖问题。下图展示了LSTM的网络结构,我们可以看到其中有许多奇怪的部分,被称之为“门”。下面就具体介绍一下遗忘门,输入门和输出门以及重要的细胞状态(Cell)。遗忘门遗忘门(Forget gate)顾名思义,是用来控制模型以多少比例或者说概率“遗忘”存贮在细胞\
转载
2021-04-21 10:57:34
3517阅读
2评论
✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。?个人主页:Matlab科研工作室?个人信条:格物致知。更多Matlab完整代码及仿真定制内容点击?智能优化算法 神经网络预测 雷达通信 &nb
原创
2023-10-19 20:55:00
65阅读
PERFORMANCE ON TEST SET: Batch Loss = 0.6423985362052917, Accuracy = 0.9051185846328735 Training iter #584292: Batch Loss = 0.357018, Accuracy = 0.966
转载
2019-04-07 20:52:00
130阅读
2评论
LSTM的介绍,通俗易懂:https://zhuanlan.zhihu./p/32085405 keras LSTM实战:Keras进行LSTM实战
原创
2022-01-17 16:30:45
192阅读
1.入门必看:万字长文带你轻松了解LSTM全貌 https://mp.weixin.qq.com/s?_
原创
2022-10-13 10:10:32
170阅读
train data file_num1 file_num2 type num5 20180927151119 1 1-100 holdsafetybelt_f6 20180927151505 2 101-200 holdsafetybelt_b 7 20180927151745 5 201-300
转载
2018-10-25 19:24:00
226阅读
2评论
Training iter #122180: Batch Loss = 0.516407, Accuracy = 0.8109999895095825
转载
2019-04-28 14:21:00
131阅读
2评论
LSTM
原创
2021-08-02 15:24:14
458阅读
LSTM 针对RNN网络中存在的问题,我们升级出LSTM网络。 核心是控制参数Ct如何更新。 LSTM可以做自然语言处理,序列化预测的问题。
原创
2021-07-22 09:53:50
275阅读
一 、单向LSTM0.导入包import torch1.rnn = torch.nn.LSTM(input_size,hidden_size,num_layers)rnn = torch.nn.LSTM(10, 20, 2) #(input_size,hidden_size,num_layers)括号里面第一个参数input_size是输入向量的长度,第二个参数hidden_size是隐藏层向量
转载
2023-10-08 11:42:10
110阅读
LSTM上节讲到的RNN循环神经网络有一个弊端,无法处理长距离依赖的问题,而RNN的变种长短时记忆网络(Long Short Term Memory Network, LSTM),可以解决这个问题。 原始RNN的隐藏层只有一个状态,即h,它对于短期的输入非常敏感。LSTM在此基础上又增加一个状态,即c,让它来保存长期的状态,称为单元状态(cell state)。 新增加的状态c,称为单元状态。我们
转载
2023-12-01 13:27:42
49阅读
1.原始RNN的问题 RNN 面临的较大问题是无法解决长跨度依赖问题,即后面节点相对于跨度很大的前面时间节点的信息感知能力太弱 。 如 图 2.1.1( 图 片 来 源 :https://www.jianshu.com/p/9dc9f41f0b29)中的两句话:左上角的句子中 sky 可以由较短跨度
转载
2020-08-27 11:14:00
214阅读
点赞
2评论
LSTM网络LSTM网络和传统MLP是不同的。像MLP,网络由神经元层组成。输入数据通过网络传播以进行预测。与RNN一样,LSTM具有递归连接,使得来自先前时间步的神经元的先前激活状态被用作形成输出的上下文。和其他的RNN不一样,LSTM具有一个独特的公式,使其避免防止出现阻止和缩放其他RNN的问题。这,以及令人影响深刻的结果是可以实现的,这也是这项技术得以普及的原因。RNNs一直以来所面临的一个
转载
2024-02-19 11:40:37
185阅读
一、LSTM网络long short term memory,即我们所称呼的LSTM,是为了解决长期以来问题而专门设计出来的,所有的RNN都具有一种重复神经网络模块的链式形式。在标准RNN中,这个重复的结构模块只有一个非常简单的结构,例如一个tanh层LSTM也有与RNN相似的循环结构,但是循环模块中不再是简单的网络,而是比较复杂的网络单 元。LSTM的循环模块主要有4个单元,以比较复杂的方式进行
转载
2023-06-25 13:04:32
494阅读
目标本文的目标是解释一个可用于构建基本LSTM模型的简单代码。我不会讨论和分析结果。这只是为了让您开始编写代码。设置环境我将在本文中使用python编写LSTM代码。环境设置如下:我建议您下载pycharm IDE并通过IDE将Tensorflow和所有其他库下载到您的项目中。您可以按照以下步骤设置环境。下载PyCharm IDE创建一个项目将Tensorflow,NumPy,SciPy,scik
转载
2023-10-14 22:03:41
120阅读
关于什么是 LSTM 我就不详细阐述了,吴恩达老师视频课里面讲的很好,我大概记录了课上的内容在吴恩达《序列模型》笔记一,网上也有很多写的好的解释多的问题,网上大部分的博客都没有讲清楚 cell 参数的设置,在我看了N多篇文章后终于搞明白了,写出来让大家少走一些弯路吧! 如上图是一个LSTM的单元,可以应用到多种RNN结构中,常用的应该是 one-to-many 和 many-to-many 下面介
转载
2024-03-26 11:17:54
47阅读
特色:1、单变量,多变量输入,自由切换 2、单步预测,多步预测,自动切换 3、基于Pytorch架构 &n
转载
2023-08-17 16:38:48
275阅读