模板匹配_51CTO博客
一、模板匹配模板匹配(TemplateMatching)就是在一幅图像中寻找和模板图像(template)最相似的区域,该方法原理简单计算速度快,能够应用于目标识别,目标跟踪等多个领域。二、原理1、cv::TM_SQDIFF:该方法使用平方差进行匹配,因此最佳的匹配结果在结果为0处,值越大匹配结果越差。2、cv::TM_SQDIFF_NORMED:该方法使用归一化的平方差进行匹配,最佳匹配也在结果
import cv2 as cvimport numpy as np# 模板匹配,就是在整个图像区域发现与
目录:(一)原理(二)代码实现和几种常见的模板匹配算法   正文:(一)原理在待检测图像上,从左到右,从上向下计算模板图像与重叠子图像的匹配度,匹配程度越大,两者相同的可能性越大。  作用有局限性,必须在指定的环境下,才能匹配成功,是受到很多因素的影响,所以有一定的适应性。模板匹配是一种最原始、最基本的模式识别方法,研究某一特定对象物的图案位于图像
转载 2023-05-23 19:39:58
407阅读
目录零之前言一.单匹配1.读入图片2.进行匹配3.读最大值坐标4.画框5.显示6.完整代码展示二.多匹配3.读取满足点坐标4.画框5.显示6.完整代码零之前言后面的学习还剩两大类:霍夫变换和图像特征的提取,都是一大章的,所以,只要本章独立了。一.单匹配模板匹配,只能匹配灰度图,对于其匹配方式,和 2D 卷积一样,它也是用模板图像在输入图像(大图)上滑动,并在每一个位置对模板图像和与其对应的输入图像
模板匹配介绍我们需要2幅图像:原图像 (I): 在这幅图像里,我们希望找到一块和模板匹配的区域模板 (T): 将和原图像比照的图像块模板匹配就是在整个图像区域发现与给定子图像匹配的小块区域。所以模板匹配首先需要一个模板图像T(给定的子图像)另外需要一个待检测的图像-源图像S工作方法,在带检测图像上,从左到右,从上向下计算模板图像与重叠子图像的匹配度,匹配程度越大,两者相同的可能
模板匹配,顾名思义是利用给定的已知模板与待匹配的图像或数组计算匹配度,以达到寻找目标的目的。模板可以是矩形块也可以是一维数组,如果模板是一个矩阵,一般待匹配的数据也矩阵,如果模板是一个一维数据,那么待匹配的数据也最好是一维数据。模板匹配在图像处理中应用较为广泛,如通过设置匹配度的阈值用在异常检测中,通过阈值设定寻找给定的目标等等。目录函数说明执行原理:函数说明先看opencv3中定义的模板匹配的函
模板匹配(Template matching, TM)是一种解码端推导方法,用来细化当前CU的运动信息,使得当前CU的MV更准确。TM主要是通过寻找一个MV使得当前图片的模板(当前 CU 的顶部和/或左侧相邻块)和参考图片的模板之间的匹配误差最小。如下图所示,在 [– 8, +8] 像素搜索范围内围绕当前 CU 的初始 MV 搜索更好的 MV。其中TM是基于 AMVR 模式确定搜索步长,并且 TM
试一下多种方式的模板匹配:dev_close_window () read_image(Image, '2008531173479_2') dev_open_window_fit_image(Image, 0, 0, 512, 512, WindowHandle) dev_display(Image) * 从原图中裁切一块作为模板 crop_part(Image, ImagePart, 445,
转载 2023-08-28 12:17:21
209阅读
1评论
模板匹配是通过模板在采集到的原图像进行滑动寻找与模板图像相似的目标。模板匹配不是基于直方图的方式,而是基于图像的灰度匹配。其基本原理是逐像素的把一个以一定大小的实时图像窗口的灰度矩阵与参考图像的所有可能的串口灰度阵列,按照某种相似度量方法进行搜索比较的匹配方法,从理论上说就是采用图像相关技术。为了利用模板匹配从源图像中得到匹配区域,从源图像选取该区域作为进行匹配模板模板从源图像左上角开始每次以
1、模板匹配基本原理模板匹配:通俗讲就是,拿着模板匹配,就是先制作一个模板,然后利用这个模板去图像中寻找与模板相似的部分,并记录寻找到的位置。模板匹配分类:按照有无变形,分为刚性模板匹配与变形模板匹配,变形模板匹配比较复杂,工业上基本是基本使用的刚性模板匹配。常用匹配方式:ncc模板匹配、形状模板匹配和XLD模板匹配模板匹配原理:模板匹配是通过搜索的方式进行匹配,比如最简单的匹配。举例:&nb
一、引言模板匹配的作用在图像识别领域作用可大了。那什么是模板匹配模板匹配,就是在一幅图像中寻找另一幅模板图像最匹配(也就是最相似)的部分的技术。说的有点抽象,下面给个例子说明就很明白了。在上面这幅全明星照中,我们想找出姚明头像的位置,并把它标记出来,可以做到吗?可以,这就是模板匹配的要做的事情。其实模板匹配实现的思想也是很简单很暴力的,就是拿着模板图片(姚明头像)在原图(全明星照)中从左上至右下
Halcon的模板匹配函数best_match_mg(Image TemplateID, MaxError, SubPixel, NumLevels, WhichLevels Row, Column, Error)最佳匹配应用灰度匹配且使用图像金字塔。best_match_mg的工作原理与best_match类似,但由
文章目录模板匹配一、opencv 函数支持1. matchTemplate()函数2.minMaxLoc()二、代码示例: 模板匹配模板匹配是一种用于查找与模板图像匹配(相似)的图像区域的技术。匹配原理: 1.首先需要两张图像, 一张源图像(I):我们期望在其中找到与模板图像匹配的图像, 一张模板图像 (T):将与源图像进行比较的模板图像 2.然后,我们的目标是检测出最匹配的区域:,将模板图像在
目录1.什么是模板匹配模板匹配方法matchTemplate()介绍素材准备2.单模板匹配2.1 单目标匹配2.2 多目标匹配3.多模板匹配1.什么是模板匹配模板匹配方法matchTemplate()介绍提供一个模板图像,一个目标图像,且满足模板图像是目标图像的一部分,从目标图像中寻找特定的模板图像的过程,即为模板匹配。OpenCV提供了matchTemplate()方法帮助我们实现模板匹配
转载 2023-07-30 22:38:00
676阅读
目录一、模板匹配能够做什么?二、六种模板匹配算法解析1、平方差匹配法method=TM_SQDIFF2、归一化平方差匹配法method=TM_SQDIFF_NORMED3、相关匹配法method=TM_CCORR4、归一化相关匹配法method=TM_ CCORR_NORMED5、系数匹配法method=TM_CCOEFF6、化相关系数匹配法 method=TM_CCOEFF_NORMED三、模板
        研究这个前前后后也有快两三个月了,因为之前也一直在弄模板匹配方面的东西,所以偶尔还是有不少朋友咨询或者问你有没有研究过linemod这个算法啊,那个效率啥的还不错啊,有段时间一直不以为然,觉得我现在用的那个匹配因该很不错的,没必要深究了。后来呢,还是忍不住手痒,把论文打出来看了看,又找了点资料研究了下,结果没想到一弄又是两个月过去了,中间也折
        我们已经可以使用 Requests 库对网站内容进行抓取了,对于一般的图片数据, 音频数据,视频数据等数据我们可以直接通过 Requests 库对其资源的 URL 进行直接请求,但是通常情况下这些数据的 URL 都是存在于 HTML 页面当中,如何从这些 HTML 页面中提取出我们想
import cv2 import numpy as np # 加载原始RGB图像 img_rgb = cv2.imread("capture1.jpg") # 创建一个原始图像的灰度版本,所有操作在灰度版本中处理,然后在RGB图像中使用相同坐标还原 img_gray = cv2.cvtColor(img_rgb, cv2.COLOR_BGR2GRAY) # 加载将要搜索的图像模板 #模板1 筛选
端午放假期间,小F实现了小程序「跳一跳」的自动化。主要涉及到了OpenCV的模板匹配和边缘检测技术,以及Android开发调试工具ADB。如果放在一起说,感觉内容有些多。所以,分三期来讲,也能多了解一些东西。首先介绍模板匹配,然后边缘检测,最后结合ADB实现「跳一跳」自动化。游戏虽然过时了,但是拿来练练手还是不错的。编程就该是快乐的,哈哈。/ 01 / 模板匹配模板匹配,就是在整个图像区域里发现与
原创 2021-01-19 14:27:08
1310阅读
OpenCV中支持的匹配算法 平方差匹配 method=CV_TM_SQDIFF 这类方法利用平方差来进行匹配,最好匹配为0.匹配越差,匹配值越大. 标准平方差匹配 method=CV_TM_SQDIFF_NORMED 相关匹配 method=CV_TM_CCORR 这类方法采用模板和图像间的乘法操作,所以较大的数表示匹配程度较高,0标识最坏的匹配效果. 标准相
转载 2020-01-09 13:24:00
558阅读
2评论
  • 1
  • 2
  • 3
  • 4
  • 5