大数据技术 —— MapReduce 简介 本文为senlie原创,转载请保留此地址:http://www.cnblogs.com/senlie/ 1.概要很多计算在概念上很直观,但由于输入数据很大,为了能在合理的时间内完成,这些计算必须分布在数以百计数以千计的机器上。例如处理爬取得到的文档、网页请
转载
2018-08-16 11:37:00
187阅读
2评论
1.Hive简述 1.1 Hive是什么 Hive是数据仓库.它是构建在Hadoop之上的,通过解析QL(Hive SQL),转换成MR任务(Tez,Spark......)去提交执行. RDBMS一般是写验证,而Hive是读验证,即数据进入不会验证数据是否符合要求,只在读取的时候检查,解析具体字段 1.2 Hive的优缺点 优点: 可以直接访问HDFS,或者其它的
转载
2023-11-13 12:42:49
89阅读
-- hive的库、表等数据操作实际是hdfs系统中的目录和文件,让开发者可以通过sql语句, 像操作关系数据库一样操作文件内容。一、hiveSQL转化为MR过程 一直好奇hiveSQL转化为MR过程,好奇hive是如何做到这些的,所以在网上找了几篇相关博客,根据自己理解重新画了一份执行过程图,做笔记。 二、h
转载
2023-07-12 09:30:10
149阅读
首先Spark是借鉴了mapreduce并在其基础上发展起来的,继承了其分布式计算的优点并改进了mapreduce明显的缺陷,但是二者也有不少的差异具体如下:MR是基于进程,spark是基于线程Spark的多个task跑在同一个进程上,这个进程会伴随spark应用程序的整个生命周期,即使没有作业进行,进程也是存在的MR的每一个task都是一个进程,当task完成时,进程也会结束所以,spark比M
转载
2023-08-11 23:35:57
219阅读
一,调优基础 :1 ,连接暗示 :需求 : 让 join 发生在 map 端sql :select /*+ mapjoin(customers) */ a.*,b.*
from customers a left outer join orders b
on a.id=b.cid;2 ,hive 执行计划hql 在执行的时候,是转化成了什么样的 mr 去执行的。3 ,查看执行计划 : expla
转载
2023-09-05 15:24:40
85阅读
MR数据流向示意图步骤 1输入文件从HDFS流向Mapper节点。在一般情况下,map所需要的数据就存在本节点,这就是数据本地化计算的优势,但是往往集群中数据分布不均衡(1000台节点,数据冗余度是10,每个文件并不能均匀分布在每个节点上),而MR的计算槽位是均匀分布在节点上的(配置文件中指定的map和reduce数量),所以势必有些计算节点需要通过数据传输从别的节点获取计算数据。步骤 2Mapp
Pig是一种编程语言,它简化了Hadoop常见的工作任务。Pig可加载数据、表达转换数据以及存储最终结果。Pig内置的操作使得半结构化数据变得有意义(如日志文件)。同时Pig可扩展使用Java中添加的自定义数据类型并支持数据转换。 Hive在Hadoop中扮演数据仓库的角色。Hive添加数据的结构在HDFS(hive superimposes structure on data in HDFS)
转载
2023-09-12 03:47:08
83阅读
Fetch抓取 hive中的某些查询不必使用MR,例如select * from,在这种情况下,hive可以简单的读取表的存储目录下的文件,然后输出查询结果到控制台。 hive.fetch.task.conversion设置成mre,如下查询方式都不会执行MR程序 hive (default)> set hive.fetch.task.conversion=more; hive (defau
三个案例wordcount案例需求分析设计代码温度统计案例需求分析设计代码涉及到的类NullWritableWritableComparable\接口WritableComparator类推荐好友案例需求分析设计代码 wordcount案例需求统计输入的文件中,每个单词出现了几次分析设计在map中将输入的每条数据切割成单词,将key为单词,value为1的计算结果输出默认的分组器会将相同key(
转载
2023-11-07 01:32:59
33阅读
基于hive引擎的计算优化本篇文章主要介绍hive引擎的计算优化,可能也是一篇实打实的对大家实际工作带来帮助的文章,全文主要包含三个部分:hive底层、hive参数调优、常见问题解决一、hive底层 - MapReduce1.MR进程一般一个完成的MR程序在运行时有三个进程,分别如下: (1)MR Appmaster:负责整个调度和过程协调 (2)MapTask:负责Map阶段的整个数据处理流程
转载
2023-11-24 21:07:57
297阅读
1 MR的原理MapeReduce(简称MR)的是大数据计算引擎,相对于Linux awk等工具而已,最大的优势是可以分布式执行,充分利用计算机的多核性能。 一个MR作业(job)是客户端需要执行的一个工作单元,包括输入数据、MR程序和配置信息。作业又可以分成若干个任务(task)来执行,包括map任务和reduce任务。原始数据被MR按照HDFS的快大小(默认128M)分片(split),每一个
一、过程 1、进行排序(自定义Hadoop序列化) 2、进行分组 二、语法 1、自定义分组,继承WritableComparator 2、创建无参构造参数 目的:将比较对象的类传给父类 super(GroupBean.class, true); 注意: a、GroupBean.class是Hadoo
原创
2021-07-14 13:50:14
238阅读
# Hive MapReduce
在大数据领域中,Hive是一个非常强大的数据仓库基础设施,它能够提供类似于SQL的查询语言来处理海量数据。而Hive MapReduce(简称Hive MR)是Hive的核心组件之一,它使用了MapReduce框架来实现Hive的查询功能。
## 什么是MapReduce?
MapReduce是一种用于处理和生成大规模数据集的一种编程模型和算法。它分为两个阶
在大数据相关的面试中,经常会遇到了一个经典的问题:请说说Spark与Hadoop MR的异同?虽然你有可能过关了,但是由于现场发挥的原因,看了这篇文章你还可以答得更好,就在这里总结一下这个问题。首先Spark是借鉴了mapreduce并在其基础上发展起来的,继承了其分布式计算的优点并改进了mapreduce明显的缺陷,但是二者也有不少的差异具体如下:1、spark把运算的中间数据存放在内存,迭代计
一、MapReduce简介之前我们我们讲解了Hadoop的分布式文件储存系统HDFS,曾把它比作一个工厂的仓库。而今天我们要介绍的MapReduce(简称MR)分布式计算框架,就可以把他看作一个工厂的流水线。1、MR的编程思想MR的核心的思想就是分而治之,通俗的来说,就是将复杂的事情分割成很多小的事情,一一去完成,最终合并结果。那么我们可以明白MR的过程实际就是输入,分,处理,合并,输出。MR的过
顺序组合式MapReduce任务、具有依赖关系的组合式MapReduce任务以及专门用于Map和Reduce主过程前处理和后处理的链式MapReduce任务。其中顺序组合式MapReduce任务可以经过变形成为迭代式的MapReduce任务。(1)顺序组合式MapReduce前一个MR的输出作为后一个MR的输入,自动的完成顺序化的执行。顺序组合式MR中的每一个子任务都需要专门的设置独立的配置代码,
转载
2023-11-01 16:19:07
73阅读
pytest使用教程参考文档:pytest中文文档前言 好的测试框架,核心为,每个文件,层级之间传递全局参数和函数。一、基本测试方法: 1、指定目录下执行pytest,正常函数 test_*.py文件会被默认测试 1 def playvoice(voice):
2 return "play "+voice
3
4 def test_playvoice():
5
我们知道,Hive默认使用的计算引擎是MR,但有没有想过我们写的HQL语句是如何转换为MR程序的?所以博主总结了一些简单HQL语句转换为MR的基本原理【1】常用SQL转换操作 Join的实现原理 对于SQL来说,join操作可以说是最常用的操作了,那么是如何转换为MR程序的呢?SQL语句如下?select u.name, o.orderid from order o join user u on
转载
2023-07-14 13:10:26
187阅读
1.思考 MR的缺点?不擅长实时计算 hadoop 的 文件是存储磁盘的 hdfs 内,传输相比内传会慢很多,相比较 Storm 和 Spark 的流处理,流处理不需要批处理的数据收集时间,也省去; 作业调度的时延。不擅长流式计算 流式计算的输入数据是动态的,但是MR 的输入数据集时静态的,不能动态变化。不擅长有向图的计算 多个应用存在依赖关系,后一个程序的输入是前一个的输出。MR 不能进行这样的
转载
2023-07-13 18:08:33
129阅读
1.复习:MR的shuffle在MR中,shuffle分为两个阶段,分别为shuffle write 和 shuffle read 在shuffle writer阶段,会有 写数据-聚合-排序-写磁盘(产生磁盘小文件)-归并排序,合并成大文件 在shuffle read阶段,拉取数据写入内存-排序-溢写-合并分组在MR中,排序的是强制的,为了后续的分组2.Spark shuffle:分为两种,Ha