勘误马氏距离与其推导这篇博客中所提到的:由于将数据集旋转后数据的各维度之间是不相关的这句话的意思并不是说维度之间可以线性相关(我们知道坐标系一定是线性无关的)。 假设样本集有n个样本,其样本矩阵:Xn×m求出的协方差中的,非对角元素代表的是在该样本矩阵中,不同维度之间的影响。而马氏距离与其推导这篇博客是说协方差的非对角元素为0(各维度之间是不相关的)。 那么协方差的非对角元素为
原创
2023-02-02 21:45:36
94阅读
马氏距离一、简介马氏距离是基于样本分布的一种距离。物理意义就是在规范化的主成分空间中的欧氏距离。所谓规范化的主成分空间就是利用主成分分析对一些数据进行主成分分解。再对所有主成分分解轴做归一化,形成新的坐标轴。由这些坐标轴张成的空间就是规范化的主成分空间二、公式最后的公式从右往左看,中心化->旋转->缩放->求欧氏距离特征值其实就是每个主成分维度的方差,特征向量其实就是每个主成分维
转载
2024-01-10 11:10:54
318阅读
可参考:马尔可夫预测法认为,只要当事物的现在状态为已知时,人们就可以预测其未来的状态,而不需要知道事物的过去状态,即马尔可夫链具有无后效性特征,这也被后人称为马尔可夫性。这一特性避开了其他预测方法在搜集历史资料时所遇到的一系列难题,使得它无论是理论上还是应用上都占有很重要的地位。 因此,检验随机过程是否具有马尔可夫性是应用马尔可夫概型分析的必要前提。第一步、建立转移概率矩阵准确计算整个目标系统的转
转载
2023-10-29 10:25:06
322阅读
在数据关联中,常常采用马氏距离来计算实际观测特征 j 的距离,从而能较为准确的选出最可能的关联。具体的做法是:D(ij)=sqrt( (-μ(j) )'Σ^(-1)(-μ(j) ) )Z(i)表示当前激光雷达的第i个测量,μ表示EKF或其他算法所维护的地图集合,$\underset{j}{\mathop{\arg \min }}\,{{D}_{ij}}$ 即为所求关联。 技术
转载
2023-10-07 16:08:26
241阅读
文章目录距离判别法欧氏距离马氏距离关于协方差矩阵Fisher判别分析应用步骤:核心思想具体步骤解释Fisher准则函数:投影降维组间偏差组内偏差求出最优解 距离判别法距离判别法首先根据已知分类的数据,分别计算出各类的重心。再根据新个体到每类的距离(即新个体与各类重心的距离,可采用欧氏距离或者马氏距离等等),根据最短的距离确定分类情况。问题描述:欧氏距离Note: 第一个等式是矩阵的写法。马氏距离
马氏距离(Mahalanobis Distence)是度量学习(metric learning)中一种常用的测度,所谓测度/距离函数/度量(metric)也就是定义一个空间中元素间距离的函数,所谓度量学习也叫做相似度学习。什么是马氏距离似乎是一种更好度量相似度的方法。马氏距离是基于样本分布的一种距离。物理意义就是在规范化的主成分空间中的欧氏距离。所谓规范化的主成分空间就是利用主成分分析对一些数据进
转载
2023-10-07 16:07:11
199阅读
欧氏距离即两项间的差是每个变量值差的平方和再平方根,目的是计算其间的整体距离即不相似性。马氏距离(Mahalanobis distances) 1)马氏距离的计算是建立在总体样本的基础上的,这一点可以从上述协方差矩阵的解释中可以得出,也就是说,如果拿同样的两个样本,放入两个不同的总体中,最后计算得出的两个样本间的马氏距离通常是不相同的,除非这两个总体的协方差矩阵碰巧相同; 2)在计算马
本博客尚未完成,不建议参考主要参考:马氏距离实例详解_NLP新手村成员的博客_马氏距离计算实例马氏距离例题详解(全网最详细)___Wedream__的博客_马氏距离公式的计算题机器学习算法------1.3 距离度量(欧式距离、曼哈顿距离、切比雪夫距离、标准化欧氏距离、余弦距离、汉明距离 、杰卡德距离、马氏距离)_程序猿-凡白的博客-CSDN博客几种常用的距离计算方式整合_Kang Hao‘s B
马氏距离(Mahalanobis distances)
1)马氏距离的计算是建立在总体样本的基础上的,这一点可以从上述协方差矩阵的解释中可以得出,也就是说,如果拿同样的两个样本,放入两个不同的总体中,最后计算得出的两个样本间的马氏距离通常是不相同的,除非这两个总体的协方差矩阵碰巧相同;
2)在计算马氏距离过程中,要求总体样本数大于样本的维数,否则得到的总体样本协方差矩阵逆矩阵不存在,
转载
2023-11-25 13:33:37
156阅读
1. 距离计算方式1.1 欧式距离(直线距离) 和 分别为两个n维向量,距离计算公式为:当不同维度的量纲不一致时,量纲大的维度权重会变大,解决方式为: 1). 向量归一化 2). 欧式距离标准化。其中为第i个维度的标准差(根据整个数据集计算) &nb
转载
2023-12-08 12:43:19
130阅读
在数据关联中,常常采用马氏距离来计算实际观测特征 j 的距离,从而能较为准确的选出最可能的关联。具体的做法是:D(ij)=sqrt( ( Z(i)-μ(j) )'Σ^(-1)( Z(i)-μ(j) ) )Z(i)表示当前激光雷达的第i个测量,μ表示EKF或其他算法所维护的地图集合,$\underset{j}{\mathop{\arg \min }}\,{{D}_{ij}}$ 即为所求关联。&nbs
转载
2023-12-14 22:14:20
71阅读
马氏距离(Mahalanobis Distance)是度量学习中一种常用的距离指标,同欧氏距离、曼哈顿距离、汉明距离等一样被用作评定数据之间的相似度指标。但却可以应对高维线性分布的数据中各维度间非独立同分布的问题。1 什么是马氏距离马氏距离(Mahalanobis Distance)是一种距离的度量,可以看作是欧氏距离的一种修正,修正了欧式距离中各个维度尺度不一致且相关的问题。 单个数据点的马氏距
转载
2023-12-26 08:30:00
188阅读
# 马氏链与马尔可夫语言
马尔可夫过程是一种随机过程,广泛应用于统计学、自然语言处理和机器学习等领域。马氏链(Markov Chain)是马尔可夫过程的一个重要特例,其特点是系统的下一个状态仅依赖于当前状态,与之前的状态无关。本文将介绍马氏链的基本概念,并通过代码示例和图表说明其应用。
## 马氏链的基本概念
马氏链由一组状态和状态转移概率构成。我们可以用状态图来表示马氏链。以下是一个简单的
一、导入数据并查看数据情况:1、数据总体状况:其中Group表示病人胃病类型。2、更改变量名:把x1,x2,x3,x4改成具有意义的变量名并且修改变量度量类型,如下图所示:3、变量的描述性统计操作:分析-描述性描述性统计结果如下:可以看到数据的分布没有特别的离异点,也没有缺失值和不合理的分布,从而可以用该数据做接下来的距离判别分析。4、由于后续做判别分析的时候,Group无法作为分类变量,从而这里
转载
2024-01-30 01:27:12
181阅读
马氏距离与其推导马氏距离就是用于度量两个坐标点之间的距离关系,表示数据的协方差距离。与尺度无关的(scale-invariant),即独立于测量尺度。基本思想(intuition)如下图的过程(以两个维度作为例子),此例的数据重心为原点,P1,P2到原点的欧氏距离相同,但点P2在y轴上相对原点有较大的变异,而点P1在x轴上相对原点有较小的变异。所以P1点距原点的直观距离是比P2点的小的。 马氏距
转载
2024-03-02 09:46:58
146阅读
基础知识:假设空间中两点x,y,定义:欧几里得距离,Mahalanobis距离,不难发现,如果去掉马氏距离中的协方差矩阵,就退化为欧氏距离。那么我们就需要探究这个多出来的因子究竟有什么含义。马氏距离直观含义:Mahalanobis距离是表示数据的协方差距离. 马氏距离计算公式:sqrt( (x-μ)'Σ^(-1)(x-μ) ) 例子如果我们以厘米为单位来测量人的身高,以克(g)为单位测量人的体重。
转载
2023-12-14 11:38:20
60阅读
# PyTorch中的马氏距离
## 引言
在数据分析和机器学习中,距离度量是非常重要的一个概念,它帮助我们理解数据之间的关系。常见的距离度量有欧几里得距离、曼哈顿距离等,其中马氏距离(Mahalanobis Distance)是一种非常实用的距离测量方式,特别是在处理具有多元高斯分布的数据时。本文将介绍马氏距离的基本概念、如何在PyTorch中实现它,并提供相关的代码示例。
## 马氏距离
# 马氏距离:一种有效的多维数据相似性度量
在机器学习和数据分析中,如何衡量数据点之间的相似性是一个关键问题。马氏距离(Mahalanobis distance)是一个常见的用于量化多维数据点之间差异的度量,尤其适用于考虑不同特征之间的相关性时。本文将介绍马氏距离的基本概念、计算方法,并提供Python代码示例。
## 一、马氏距离的定义
马氏距离是由印度统计学家妈哈拉诺比斯(Madhusu
# Python中的马氏检验:概述与代码示例
马氏检验(Mahalanobis Distance)是一种常用的统计方法,用于识别多变量数据中的异常值。与传统的欧几里得距离不同,马氏距离考虑了变量之间的相关性,并基于数据的协方差矩阵进行计算。因此,马氏距离对于多维数据的分析尤其有效。
## 马氏距离的定义
马氏距离是通过以下公式计算的:
\[
D_M = \sqrt{(X - \mu)^{T
# Python 实现马氏距离(Mahalanobis Distance)
马氏距离是一种衡量多维空间中两点间距离的度量,它考虑了变量之间的相关性,并且能够描述数据的分布特征。本文将带领你一步步实现 Python 中的马氏距离计算。
## 文章结构
1. **什么是马氏距离?**
2. **实现流程概览**
3. **实现步骤详解**
4. **总结**
## 什么是马氏距离?
马氏距离