高斯_51CTO博客
28 高斯模糊 opencv知识点:高斯模糊 - GaussianBlur 本课所解决的问题:如何理解高斯模糊?如果实现高斯模糊?1.高斯模糊常用的模糊算法有两种,一种是均值(盒子),一种是高斯。 现在我们来介绍一下高斯模糊首先我们了解一下什么是模糊模糊就是对图像进行平滑化处理。 平滑化处理,就是用平滑滤波函数,生成卷积核对应的权重,然后对图像进行卷积操作。均值模糊可以做到让图片模糊,但是它的模糊
摘要: 高斯-克吕格投影与UTM投影都是横轴墨卡托投影的变种。目前一些国外的软件或国外进口仪器的配套软件往往不支持高斯-克吕格投影,但支持UTM投影,因此常有把UTM投影当作高斯-克吕格投影的现象。 两者的区别:投影几何方式不同。高斯-克吕格投影是“等角横切椭圆柱投影.... 高斯-克吕格投影与UTM投影都是横轴墨卡托投影的变种。目前一些国外的软件或国外进口仪器的配套软件往往不支持高斯-克吕格
转载 7月前
46阅读
正态分布是高斯概率分布。高斯概率分布是反映中心极限定理原理的函数,该定理指出当随机样本足够大时,总体样本将趋向于期望值并且远离期望值的值将不太频繁地出现。高斯积分是高斯函数在整条实数线上的定积分。这三个主题,高斯函数、高斯积分和高斯概率分布是这样交织在一起的,所以我认为最好尝试一次性解决这三个主题(但是我错了,这是本篇文章的不同主题)。本篇文章我们首先将研究高斯函数的一般定义是什么,然后将看一下高
在 scikit-learn 中,一共有3个朴素贝叶斯的分类算法类。分别是 GaussianNB、MultinomialNB 和 BernoulliNB。其中 GaussianNB 就是先验为高斯分布(正态分布)的朴素贝叶斯,MultinomialNB 就是先验为多项式分布的朴素贝叶斯,而 BernoulliNB 就是先验为伯努利分布的朴素贝叶斯。 这三个类适用的分类场景各不相同,一般来说:如果
转载 2023-11-21 08:55:52
76阅读
一、基础部分                                 μ指的是期望,决定了正态分布的中心对称轴 σ指的是方差决定了正态分布的胖瘦,方差越大,正态分布相对的胖而矮 方差:(x指的是平均数) &nbs
目录总结:伯努利-伯努利RBM概念:公式定义训练过程高斯-伯努利RBM概念:总结:RBM是基于能量函数假设的,优化目标是使能量函数最小化,也设定为重构的可见层等于真实值的概率最大化。在利用极大似然函数求解最优参数时,由于偏导数中存在模型的联合概率分布,包含归一化因子Z,使得难以准确计算出联合概率分布,因此常采用采样法使用局部值来代替全局值。(对数似然、求导、梯度更新)使用采样法中,吉布斯采样根据全
1、一维高斯函数: a表示得到曲线的高度,b是指曲线在x轴的中心,c指width(与半峰全宽有关),图形如下: 、2、根据一维高斯函数,可以推导得到二维高斯函数: 在图形上,正态分布是一种钟形曲线,越接近中心,取值越大,越远离中心,取值越小。 计算平均值的时候,我们只需要将"中心点"作为原点,其他点按照其在正态曲线上的位置,分配权重,就可以得到一个加权平均值。常用作图像平滑操作。 例如:通常,图像
转载 2023-10-12 21:00:30
60阅读
问题提出实际生产过程中,出产投入使用之前,经常会评价某些参数是否有异常,然后再判断是否要重新检测。评价并不是简单的根据特定参数的阈值来的,而是根据宏观上产出群体的所有参数分布得出的。 比如生成飞机引擎,震动和热量参数,对所有出产的引擎进行测试,得到如下分布: 为了评价这种差异,定性分析如下: 高斯分布从上面的直观感受、定性分析可知越接近中心区域的越不可能是异常。为了定量分析,引入高斯分布。
申明:以下内容为笔者翻译自国际会议论文,鉴于本人水平有限,翻译难免有误,请大家多多包容。原文为:An Improved Adaptive Background Mixture Model for Real-time Tracking with Shadow Detection; 
高斯窗常用于对图像进行模糊或低通滤噪,但是随着高斯半径的增加,时间消耗会逐级增加 如高斯半径为N时,计算每个输出采样点需要计算的乘法次数为(2N+1)模糊方向数,加法次数为2N模糊方向数,这种情况下,当N=100时,甚至更大时,计算量是非常大的,即使进行SIMD指令集优化,在很多情况下仍然不能满足要求,比如N=100时,优化后的汇编代码的执行时间也通常在几百毫秒以上,远不能达到实时处理要求。
要搞清楚高斯核的原理的话,把下面这篇博文认认真真看一遍就可以了,链接如下:下面是我认为值得注意和需要补充说明的几点:1 为什么高斯滤波能够让图像实现模糊化? 答:高斯滤波本质是低通滤通(有兴趣的同学可以查阅高斯滤波器的频率响应函数),即让信号(数据集)的低频部分通过,高频部分滤除。图像的细节其实主要体现在高频部分,所以经过高斯滤波,图像看起来就变模糊了。2 为什么很多文章中说生成高斯核时,我们通常
(仅校内网用户可访问)下载及安装说明:1. 选择您所需版本的安装包下载至本地。2. 打开安装包可找到Serial Number文件,请勿泄露给非上科大人员。启动安装程序后根据提示输入序列号。4. 该软件仅限在上海科技大学教学和学术研究中使用。辅导资料:Gaussian及Gaussview简介:Gaussian是一个功能强大的量子化学综合软件包。其可执行程序可在不同型号的大型计算机、超级计算机、工作
一.Java语言的发展历史二.java语言的开发环境搭建三.HelloWorld入门程序四.注释,关键字,以及常量Java语言的发展历史:Java语言是1995年由sun推出的的一门高级编程语言,2009年,sun公司被甲骨文公司收购,现在我们了解Java可以直接访问甲骨文公司的官网:https://www.oracle.com创始人之一的詹姆斯.高斯林被称为''Java之父''我们最常用的Jav
1.      用途根据一些已知的量来预测未知的量。常用于运动预测。2.      定义卡尔曼滤波(Kalmanfiltering)一种利用线性系统状态方程,通过系统输入输出观测数据,对系统状态进行最优估计的算法。 由于观测数据中包括系统中的噪声和干扰的影响,最优估计也可看作是滤
1函数的基本概念 所谓径向基函数 (Radial Basis Function 简称 RBF), 就是某种沿径向对称的标量函数。 通常定义为 空间中任一点x到某一中心xc之间欧氏距离的单调函数 , 可记作 k(||x-xc||), 其作用往往是局部的 , 即当x远离xc时函数取值很小。最常用的径向基函数是高斯核函数 ,形式为 k(||x-xc||)=exp{- ||x-xc||^2/(2*
高斯判别分析基本原理算法详解GDA和逻辑回归 基本原理在二分类中逻辑回归是通过不断优化参数,找到最合适的分类界限。而高斯判别分析法采用先通过数据特征建立类别模型,然后在寻找分界线分类。 简单来说我们要进行区分猫和狗,逻辑回归分析法就是找到猫和狗的分界线,当新的猫狗要判断这种方法只会确定猫狗在分界线的那一边,也就说它并不能解释什么是猫什么是狗。而高斯判别分析是一种生成学习方法,通过猫狗的数据,建立
1 #include "stdafx.h" 2 #include "highgui.h" 3 #include "cv.h" 4 #include <fstream> 5 #include <iostream> 6 using namespace std; 7 void example2_4( IplImage* image ) 8 { 9 cvN
转载 2023-10-17 07:18:17
84阅读
2022年3月8日,华为GaussDB 200(即“华为云GaussDB(DWS)”)正式获得全球权威信息技术安全性评估标准CC EAL2 + ALC_FLR.2级别认证,这是中国数据仓库产品首次获得的国际安全认证,目前全球数据库领域通过该认证的厂商仅有6家,华为是迄今为止唯一通过认证的中国数据库厂商。中国唯一获得CC安全认证,华为云GaussDB(DWS)打造数据资产金钟罩 信息技术安全评估通用
陈拓 2020/12/10-2020/12/10 我要在他处使用C语言产生高斯白噪声,先用MATLIB生成一个能产生高斯白噪声的C程序作为参考。1. 高斯白噪声百度百科,高斯白噪声(White Gaussian Noise,WGN):如果一个噪声,它的瞬时值服从高斯分布(正态分布),而它的功率谱密度又是均匀分布的,则称它为高斯白噪声。2. 用BATLIB产生高斯白噪声新建一个函数文件使用
文章目录一、高斯消元法1 模板题II 高斯消元法解异或线性方程组二、求组合数1 递推预处理求组合数——N^22 预处理阶乘求组合数——NLOGN3 卢卡斯(Lucas)定理—询问次数少,数据范围暴大4 精确的计算组合数(非取模意义下)三、卡特兰数一、高斯消元法  学过线性代数的我们都知道,高斯消元法就是用来求解线性方程组的,对应到代码领域,高斯消元法可以在n^3的时间复杂度内求解n个未知数n个方程
  • 1
  • 2
  • 3
  • 4
  • 5