EMD_51CTO博客
EM算法:期望最大化算法MLE(极大似然估计法)是一种非常有效的参数估计方法,但在概率模型中,有时既含有观测变量 (observable variable), 又含有隐变量(hidden variable)或潜在变量(latent variable),例如:分布中有多余参数或数据为截尾或缺失时,这个时候使用MLE求解是比较困难的。于是Dempster等人于1977年提出了EM算法,其出发点是把求M
库卡(KUKA)机器人入门学习必备知识1、库卡机器人零点标定使用的工具通常有两种:1)千分表,标定精度偏低。2)EMD电子装置,标定精度较高。2、库卡机器人停机模式有三种。分别是:STOP0,STOP1,STOP2这三种模式,停止的过程也不同。3、库卡机器人控制柜有基本的有5种型号。分别是:紧凑型( Compact )、小型( Smallsize-2 )、标准型( Standard )、中型( M
点云分析中的EMD(Earth Mover’s Distance)距离EMD(Earth Mover’s Distance)距离介绍EMD距离,又叫做推土机距离,也叫作Wasserstein距离。个人理解,EMD距离是离散化的Wasserstein距离,而Wasserstein距离是描述两个连续随机变量的EMD距离。二者数学思想是相同的,但是所描述的对象和应用场景稍有区分。由于个人正在做关于点云数
重头戏来了。在以往的应用经验里,VMD方法在众多模态分解方法中可以说是非常好的。从催更力度上看,这个方法也是格外受关注。笔者决定加快进度快一些写完这个方法,十月份了有些同学要开始做毕设,希望这篇文能帮上忙。1. VMD(变分模态分解)的概念VMD(Variational Mode Decomposition)即变分模态分解,与2014年由Dragomiretskiy[1]等人提出,虽然它也叫模态分
转载 10月前
744阅读
LAMMPS学习总结11、手册中说,Compute temp/region与执行温度调节的fix(fix nve/fix langevin等)命令一起使用,那么这个偏差将从每个原子中减去,剩余的热速度的温度调节将被执行,并且偏差将被添加回去。这是什么意思????2、NEMD计算热导率的langvin控温法中,为什么两次langevin控温呢?而且第一次的fix 没有unfix就直接又fix了 这
统计学习基础回顾 1. 后验概率 2 2. . 极大似然法 (MLE)  信息论基础 1. (互)信息 2. 熵、条件熵 3. 交叉熵、相对熵  最大熵模型 1 1 . 凸优化理论推导 Maxent 2. 与 MLE 的关系  EM 算法 1 1 . GMM 实例 2. MLE 推导我希望自己能通俗地把它理解或者说明白,但是,EM这个问题感觉真的不太好用通俗的语言去说明白,因为
呆瓜在论文里使用了EMD方法,对于EMD方法,呆瓜刚开始接触时是懵逼的,完全不知道用来干什么。在请教了导师和夫哥后呆瓜也进行了自学,现在呆瓜对EMD有了初步的了解,也算是在论文之路上又前进了一步。在本文最后,呆瓜对上证闭盘数据进行了EMD分解,但只是做了分解图,并未作出解读和分析。本文结构大致如下图:首先,信号处理是现代科学的一个重要研究领域,遍及通信、数据分析、模式识别、金融等几乎所有的应用领域
文章目录1、简单介绍2、基本条件3、方法步骤3.1求平均包络线3.2 通过IMF判断求最终4、去噪应用 1、简单介绍经验模态分解( empirical mode decomposition,EMD)是由美国国家宇航局的华裔科学家Norden e. Huang博士于1998年提出的一种新的处理非平稳信号的方法——希尔伯特——黄变化的重要组成部分。基于EMD的时频分析方法既适合于非线性、非平稳信号的
EM算法在统计计算中,最大期望(EM)算法是在概率(probabilistic)模型中寻找参数最大似然估计或者最大后验估计的算法,其中概率模型依赖于无法观测的隐藏变量(Latent Variable)。最大期望经常用在机器学习和计算机视觉的数据聚类(Data Clustering)领域。最大期望算法经过两个步骤交替进行计算:第一步是计算期望(E),利用概率模型参数的现有估计值,计算隐藏变量的期望;
一.场景介绍 最近在研究一个场景:图片质量评分,给一张图片一个预测的分数。 里面提到了用 EMD(Earth Mover’s Distance)算法来评估两张图片之间的分布距离。下面主要讲解下EMD算法的原理。 二.EMD算法 1.起源 EMD最早由Yossi Rubner????在2000年用在图像检
原创 2021-09-05 14:32:28
2115阅读
K近邻算法K近邻算法优点就是算法简单,很容易理解,也很方便。缺点就是计算量大,每次输入一个向量x,把它归类时总要计算一遍离所有点的距离,并且排序。这十分麻烦,对于高维的数据以及样本量较大的数据。其计算量是十分大的,因此不建议使用。还有一个缺点就是,输入一个n1的向量X,结果需要计算其距离,变成了一个nn的矩阵,因此是数据变大,对存储而言也是一种压力。决策树 决策树是一种有监督学习的方式,回归树输出
很多同学留言要EMD的代码,这篇文章就写一下吧。一、使用MATLAB自带函数如果你的MATLAB版本是2018a及更新版本,那么是可以直接调用emd函数的。以下代码在MATLAB2019a中编写,未在其他版本中测试。load('sinusoidalSignalExampleData.mat','X','fs') %载入数据 t = (0:length(X)-1)/fs; plot(t,X)
EM算法:最大期望算法是一类通过迭代进行极大似然估计的优化算法,通常作为牛顿迭代法的替代,用于对包含隐变量或缺失数据的概率模型进行参数估计。在进行了解之前,我们先通过一个抛硬币的经典例子来解释EM算法的由来: 现在我们有两枚硬币 A 和 B,这两枚硬币和普通的硬币不一样,他们投掷出正面的概率和投掷出反面的概率不一定相同。我们将 A 和 B 投掷出正面的概率分别记为θA和θB。独立地做 5 次试验:
EMD是时频分析常用的一种信号处理方式,EMD经过发展到现在也有很多不同的发展,本文总结了已知的各种优化和变种。分类:EMD(经验模态分解):基本模态分解 EEMD(集合经验模态分解):EMD+白噪声 CEEMD(互补集合经验模态分解):加正负成对的辅助白噪声 CEEMDAN(完全自适应噪声集合经验模态分解):分解过程加白噪声经EMD分解得到的各阶IMF分量 ESMD(极点对称模态分解):外部包络
目录EMD分解解析一、 EMD初步介绍1.什么是EMD?2.EMD的工作原理是什么?3.EMD的基本分解过程二、EMD的分解三、EMD工具包的安装参考文献 EMD分解解析希望能通过这篇文章,让你对EMD分解具有初步的了解。一、 EMD初步介绍1.什么是EMD?经验模态分解(Empirical Mode Decomposition,简称EMD)方法被认为是2000年来以傅立叶变换为基础的线性和稳态
1、什么是EMD?从本质上说,EMD是一个对信号进行平稳化处理的过程。 通俗的说,用EMD有什么好处呢?对于一段未知信号,不需要做预先分析与研究,就可以直接开始分解。这个方法会自动按照一些固模式按层次分好,而不需要人为设置和干预。 再通俗一点,EMD就像一台机器,把一堆混在一起的硬币扔进去,他会自动按照1元、5毛、1毛、5分、1分地分成几份。2、内涵模态分量(Intrinsic Mode Func
EDM营销:全称Email Direct Marketing,即电子邮件营销。企业可以通过使用EDM软件向目标客户发送EDM邮件,建立同目标顾客的沟通渠道,向其直接传达相关信息,用来促进销售。EDM软件有多种用途,可以发送电子广告、产品信息、销售信息、市场调查、市场推广活动信息等。身为一名会修电脑的数据分析师,总是要想着怎样把公司电脑搞坏,顺便给公司创造点价值刚好python有个 import
经验模态分解(EMD)为什么要用EMD相比于时频处理方法小波分析的好处克服了基函数无自适应性的问题。 小波分析需要选某个小波基。即使小波基在全局可能是最佳的,但在某些局部可能不是,所以小波分析的基函数缺乏适应性。对于一段未知信号,不需要做预先分析与研究,就可以直接开始分解。 会自动按照一些固模式按层次分好,而不需要人为设置和干预。也就是说,EMD分解信号不需要事先预定或强制给定基函数,
开始看PBOC/EMV中IC卡的文件结构时,就被DF, MF, EF,DDF,ADF这些概念弄晕了. 文档里对这几个概念讲解的都不够通俗. 不过这也不奇怪, 这种所谓的标准如果讲的太通俗,那么制定这些标准的人又怎么能够称得上是专家呢! 下面根据自己的理解, 把这几个概念讲解一下. 首先, MF, DF和EF这三个其实是iso78
看到一位博主写的关于EMD的一些见解,觉得挺有用,特用来保存分享,原文链接:https://www.ilovematlab.cn/thread-566089-1-1.htmlEMD是一种信号分解工具。 与小波分解不同。小波分解是利用信号和小波之间的相关性来进行信号分解,当然小波的特性在分解过程中是可以变化的,即所谓的translation and scale。EMD则是完全根据信号本身的特点来进行
转载 2024-03-22 09:13:59
80阅读
  • 1
  • 2
  • 3
  • 4
  • 5