在进行数据分析时,我们通常需要用到各类分析模型和方法,一是为了让自己的结论更有说服力,二是让论证过程更具备逻辑性和条理性。今天帆软君就来给大家分享18种常用的数据分析模型和方法,并附上用FineBI分析的步骤教程,希望对大家有所帮助!1、RFM模型 RFM 用于对用户进行分类,并判断每类细分用户的价值。三个关键指标:最近一次消费时间(R):客户距离最近的一次采购时间的间隔。 最近一段时间内消费频次
转载
2023-11-16 21:23:02
38阅读
大家在工作中是不是经常要做各种分析,但又常常遇到无从下手,抓不住重点,搞不清关键数据的情况。俗话说“工欲善其事,必先利其器。”一个好用的数据分析模型,能给我们提供一种视角和思维框架,从而帮我们理清分析逻辑,提高分析准确性。我研究数据分析也很多年了,今天特意为大家整理出了8大常用数据分析模型,帮助大家快速提高数据分析能力。干货推荐绝了,这6个精挑细选的机器学习资料简直太香了深度盘点:这20套可视化炫
转载
2023-11-17 19:43:36
39阅读
2.1 大数据分析模型建立方法大数据分析模型可以基于传统数据分析方法中的建模方法建立,也可以采取面向大数据的独特方法来建立。为了区分这两种模型建立方法,我们分别简称其为传统建模方法和大数据建模方法。由于这两种模型建立方法存在一些交集(如业务调研、结果校验等),我们采取统一框架来进行介绍,在介绍时区分两种建模方法的不同之处。传统数据分析建模方法与大数据分析建模方法从大数据这个概念提出开始,就有“大数
转载
2023-06-06 21:43:56
196阅读
现在的大数据的流行程度不用说大家都知道,大数据离不开数据分析,而数据分析的方法和数据分析模型多种多样,按照数据分析将这些数据分析方法与模型分为对比分析、分类分析、相关分析和综合分析四种方式,这四种方式的不同点前三类以定性的数据分析方法与模型为主,综合类数据分析方法与模型是注重定性与定量相结合。一、分类分析数据分析法在数据分析中,如果将数据进行分类就能够更好的分析。分类分析是将一些
转载
2023-09-13 23:53:54
96阅读
序1、数据分析 & 建模数据分析工作的核心是:发现和挖掘有用的信息,得出建设性的结论及辅助制定决策。其主要工作内容包括:数据获取、数据清洗、数据重构、数据建模、模型验证等。众所周知,数据是分析的基础,数据的质量、数据的相关度、数据的维度等都会影响数据分析的结果。因此利用已经处理好的数据,建立模型,才是将数据的价值最大化发挥出来。人工智能技术的兴起,机器学习和深度学习等算法模型在很多领域发挥
转载
2023-06-07 11:29:19
698阅读
Power BI 是基于云的商业数据分析和共享工具,它能帮您把复杂的数据转化成最简洁的视图。通过它,您可以快速创建丰富的可视化交互式报告,即使在外也能用手机端 APP 随时查看。甚至检测公司各项业务的运行状况,只需它仪表板的一个界面就够了。你该系列教程为大家介绍了如何使用 Power BI Desktop 将已连接的数据准备就绪,以供使用。比如“如何管理数据关系”、“如何创建计算列”、“如何优化数
1.python数据建模概述数据建模指的是对现实世界各类数据的抽象组织,建立一个适合的模型对数据进行处理。在数据分析与挖掘中,我们通常需要根据一些数据建立起特定的模型,然后处理。模型的建立需要依赖于算法,一般,常见的算法有分类(有明确类别)、聚类(无明确类别)、关联、回归等。2.python数据分类实现过程数据分类主要处理现实生活中的分类问题,一般处理思路如下:(1)首先明确需求并对数据进行观察;
数据建模基础大数据分析场景和模型应用数据分析建模需要先明确业务需求,然后选择是 描述型分析 还是 预测型分析。如果分析的目的是描述目标行为模式,就采用描述型数据分析,描述型分析就考虑 关联规则、 序列规则 、 聚类 等模型。如果是预测型数据分析,就是量化未来一段时间内,某个事件的发生概率。有两大预测分析模型, 
转载
2023-09-19 08:27:01
161阅读
序1、数据分析 & 建模数据分析工作的核心是:发现和挖掘有用的信息,得出建设性的结论及辅助制定决策。其主要工作内容包括:数据获取、数据清洗、数据重构、数据建模、模型验证等。众所周知,数据是分析的基础,数据的质量、数据的相关度、数据的维度等都会影响数据分析的结果。因此利用已经处理好的数据,建立模型,才是将数据的价值最大化发挥出来。人工智能技术的兴起,机器学习和深度学习等算法模型
转载
2023-08-15 20:21:40
748阅读
4.模型搭建和评估经过前面的两章的知识点的学习,我们可以对数数据的本身进行处理,比如数据本身的增删查补,还可以做必要的清洗工作。那么下面我们就要开始使用我们前面处理好的数据了。这一章我们要做的就是使用数据,nv我们做数据分析的目的也就是,运用我们的数据以及结合我的业务来得到某些我们需要知道的结果。那么分析的第一步就是建模,搭建一个预测模型或者其他模型;我们从这个模型的到结果之后,我们要分析我的模型
转载
2023-08-12 23:59:37
63阅读
所谓市场调研就是对某一目标,收集、整理、分析有关信息,通过对数据或信息的分析,得到相应结论,从而为企业决策提供参考,实现企业利益最大化。数据分析是市场调研中重要组成部分,在分析过程中我们会遇到许多统计分析方法。今天我们就来介绍8种市场调研中常用的数据统计分析方法,以及如何在SPSSAU使用这些方法。01 频数分析:分析比例,掌握基础信息无论是哪种领域的统计分析,频数分析都是最常用的方法。在市场调研
转载
2023-09-19 08:30:56
182阅读
面板数据分析步骤阅读笔记,1. 单位根检验分析数据的平稳性,避免出现虚假回归或伪回归。李子奈认为平稳的真正含义是:一个时间序列剔除了不变的均值(可视为截距)和时间趋势以后,剩余的序列为零均值,同方差,即白噪声。因此单位根检验时有三种检验模式:既有趋势又有截距、只有截距、以上都无。对面板数据绘制时序图,粗略观测时序图中是否含有趋势项和(或)截距项;检验单位根的方法:LLC法:该方法允许不同截距和时间
转载
2023-08-07 07:48:07
304阅读
大数据应用有几个方面,一个是效率提升,帮助企业提升数据处理效率,降低数据存储成本。另外一个是对业务作出指导,例如精准营销,反欺诈,风险管理以及业务提升。过去企业都是通过线下渠道接触客户,客户数据不全,只能利用财务数据进行业务运营分析,缺少围绕客户的个人数据,数据分析应用的领域集中在企业内部经营和财务分析。 数字时代到来之后,企业经营的各个阶段都可以被记录下来,产品销售的各个环节也被记录下来
转载
2023-06-07 14:59:53
83阅读
文章目录一、前期准备1.1 载入数据二、模型搭建2.1 模型选择2.2 切割训练集和测试集2.3 模型建立2.4 输出模型预测结果 一、前期准备1、对数数据的本身进行处理,比如数据本身的增删查补,还可以做必要的清洗工作——>得出处理好的数据2、数据分析的目的:运用我们的数据以及结合我的业务来得到某些我们需要知道的结果。第一步:建模,搭建一个预测模型或者其他模型第二步:评估,从这个模型的到结
转载
2023-08-16 10:59:06
57阅读
因素之间存在着相互依赖又相互制约的关系,通常是复杂的非线性关系。为了分析其相互作用机制,揭示内部规律,可根据理论推导,或对观测数据的分析,或依据实践经验,设计一种模型来代表所研究的对象。模型分析数据分析和模型Codd根据处理数据的范围、用户-分析人员的交互需要、多维分析需求及现有工具的支持等因素,将数据分析模型分为四种模型:1.绝对模型(categorical model); 2.解释模型(exe
转载
2023-06-07 14:09:40
105阅读
随着信息系统的普及,企业积累的数据越来越多,这些海量数据的价值是不可估量的。但这些原始数据往往是分散的、混乱的、隔离的,导致数据孤岛的形成。为了充分合理的利用数据,企业开始建立自己的数据仓库。那么问题来了,不同条线、不同场景的数据应该如何整合到同一个仓库呢?数据建模可能是一个不错的选择。一起来看看数据建模有那些常用的模型。 一、定义数据建模数据建模是基于对业务数据的理解和数据分析的需要,
转载
2023-07-03 17:33:32
34阅读
数学建模标准流程包括商业理解、数据理解、数据清洗、建立模型、部署应用留个流程,具体如下:
我们将数据建模标准流程转化为可执行可实施部分,那就是以下几个步骤:商业理解即对建模的项目需求和目标进行综合分析,对项目的可行性和数据条件进行评估,对业务进行梳理和深入了解,根据实际情况评估模型建立的价值。以下主要介绍用KNIME(国外比较流行的数据挖掘建模工具,类似于SPSS Modelar工具)工具建立模
转载
2023-09-26 13:42:01
168阅读
一、概念:从多个表格、多个来源的数据中,根据不同的维度,不同的逻辑来聚合分析数据;而提取数据的前提是要将这些数据表建立关系,这个建立关系的过程就是数据建模。二、案例:比如有个电子产品专卖店,销售产品有三类:手机、电脑、平板,每一类又分别来自三个品牌:小米、苹果、三星,那么这个店销售的产品共计 9 个,其销售明细也是记录这些产品每天的销售数据, 为了能分析每个品牌的销售金额,或者分析每个产品类别的销
转载
2023-08-15 19:09:30
114阅读
数学建模——数据包络分析步骤及程序详解 文章目录数学建模——数据包络分析步骤及程序详解前言一、数据包络分析介绍1、原理2、CCR模型3、BCC模型4、CCR和BBC的实际应用二、代码程序三、实战1、结果解读2、模型优缺点总结参考资料 前言数据包络分析(Data envelopment analysis,DEA)是运筹学和研究经济生产边界的一种方法。该方法一般被用来测量一些决策部门的生产效率。这里数
转载
2023-11-16 21:22:29
76阅读
数据分析的思路极其重要,以致于我们总是忽略它,重“术”而轻“道”,但其实应该一视同仁。这篇文章讲了表单分析、用户分析、埋点分析、聚类分析等10种分析方法,先学为敬~ 道家曾强调四个字,叫“道、法、术、器”。层次分别为:“器”是指物品或工具,在数据分析领域指的就是数据分析的产品或工具,“工欲善其事,必先利其器”;“术”是指操作技术,是技能的高低、效率的高下,如对分析工具使用的技术;“法”是指选择的方
转载
2023-10-31 10:47:42
5阅读