OpenCV视觉技术_51CTO博客
一:基本知识    在图像处理中,最基本的形态学操作有二种,他们是:膨胀与腐蚀(Dilation与Erosion)。    其实,膨胀就是求局部最大值的操作。    按数学方面来说,膨胀或者腐蚀操作就是将图像(或图像的一部分区域,我们称之为A)与核(我们称之为B)进行卷积。    核可以是任何的形状和大小,它拥有一个单
cvGetCaptureProperty是我们需要使用到的获取视频属性的函数。 double cvGetCaptureProperty( CvCapture* capture, int property_id ); capture 视频获取结构。 property_id 属性标识。 CV_CAP_PROP_POS_MSEC - 影片目前位置,为毫秒数或
转载 8月前
61阅读
视频会议软件的视频质量除了与外置设备、编码器相关外,还与视频的后处理技术相关,视频图像通过后处理技术,如图像增强、图像去噪等,图像质量会得到主观上较大的提高。而我们通常的视频后处理技术会采用开源的项目的一些代码来实现,而这些开源的项目中,最值得我们关注的是OpenCVOpenCV是一个基于C和C++的跨平台图像视觉库,其图像的处理函数都是经过优化,可以用于实时的图像处理,其代码拥有完善的API函
视觉 AI 作为一个已经发展成熟的技术领域,具有丰富的应用场景和商业化价值,全球 40% 的 AI 企业都集中在视觉 AI 领域。近年来,视觉 AI 除了在智能手机、智能汽车、智慧安防等典型行业中发挥重要作用外,更全面渗入细分的实体行业,催生了如车站人脸实名认证、人脸支付、小区人脸门禁管理、酒店自助人脸实名登记等视觉 AI 的应用。人脸识别是视觉 AI 领域中技术成熟度、商业应用程度都比较
实验七 查找并绘制轮廓实验一、实验目的和要求二、实验内容三、实验仪器、设备四、实验原理五、实验步骤六、实验注意事项七、实验结果八、实验总结 一、实验目的和要求  理解查找图像轮廓的基本原理;掌握使用OpenCV实现查找轮廓的代码编写方法;掌握使用OpenCV实现绘制轮廓的代码编写方法。二、实验内容  (一)新建工程;   (二)在Vs2015中配置OpenCV;   (三)使用OpenCV中的f
普通二本生(大二)没获奖,因为驱动方面和视觉协同问题没有做好(驱动方面跑太快,速度降不下来)只跑了最初级的,这个文章就是去记录一下我的成长过程吧。 目录1.使用神经网络来进行识别2.使用模板匹配来进行识别1.1 将这种灰度图转化为黑白图检测更快更准1.2第一次进行识别记住给的数字1.3 第二次识别十字与T字后,再次识别数字判断左右转3.巡线代码的实现4.与主控芯片的通信5.完整代码 1.使用神经网
作者:PRATEEK JOSHI翻译:张若楠本文为一个从图像预处理角度入手的无人驾驶车道识别实战项目。作者序大约十年前,我瞥见了第一辆自动驾驶汽车,当时Google仍在对初代无人车进行测试,而我立刻被这个想法吸引了。诚然,在将这些概念开源给社区之前,我必须等待一段时间,但是这些等待是值得的。我最近尝试了一些与计算机视觉有关的自动驾驶理念,其中包括车道检测。设想一下,在设计任何自动驾驶汽车
1.双远心镜头的放大倍率与被测物的位置及像平面的位置无关。而在物方远心镜头中,对应一个固定的像平面,放大倍率是一个常数。2.镜头的像差:球差(对称):非球面代替球面镜头;使用较大F,较小的通光光圈慧差(非对称):使用较小F,较大的通光光圈3.线扫描应用要求非常强的照明,镜头通常使用较小F值,限制景深4.镜头选择不应该小于传感器尺寸,如1/2'镜头不能使用2/3'传感器5.Image是二维数组6.R
上期我们一起学习了常用的图像处理库相关的知识机器视觉算法(第5期)----常用图像处理库都有哪些?今后我们逐步深入,以开源库OpenCV图像处理库为工具,来逐步学习视觉方面的算法。工欲善其事,必先利其器,所以近几期,我们将一起系统的学习下OpenCV这个常用的开源图像处理库。首先这期我们主要介绍下OpenCV中常见的8大基础数据类型及其支持的操作。1. Point类作为OpenCV的基本类型,Po
边缘检测和图像轮廓查找一、理论分析二、代码分析2.1 边缘检测2.1.1 Sobel算子2.1.2 Scharr算子2.1.3 Laplacian算子2.1.4 Canny算子去噪梯度非极大值抑制滞后阈值2.2 特征检测三、代码文件 一、理论分析图像的边缘信息通俗来讲变化较大。基于此特征和数字图像的离散信号,我们可以计算图片的差分或梯度。 图像处理中有多种边缘检测的算电子,包括普通一阶差分,So
今天我们主要学习一下OpenCV中最重要的数据类型--数组Mat,这个结构可以视为是OpenCV所有C++实现的核心,OpenCV中所有主要函数都或是Mat类的成员,或是将Mat类作为参数,或是返回一个Mat类型。很少有函数和这三者都没有关系的。每一个Mat矩阵,都包含一个表示它数据类型的flag成员,一个表示其维度的成员dims,分别表示行和列数的成员rows和cols(dims>2无效)
一、人工智能介绍AI、5G、物联网 ---> 人工智能+物联网、互联网+移动互联网+物联网 随着5G设备的商用,越来越多的设备开始能够联网,比如通过语音控制,比如扫地机器人、智能音响、智能家居、自动驾驶等就是互联网+移动互联网+物联网的产物。所以,软件和硬件的结合就更为重要。 理论、实践机器视觉(Machine Vision) vs 计算机视觉(Computer Vision) 通俗的说二者
图片&视频的加载和显示 机器视觉基础 1.1 机器视觉的应用 物体识别: 人脸识别, 车辆检测 识别图像中的文字(OCR) 图像拼接, 修复, 背景替换 图像视频的加载和显示 2.1 创建和显示窗口 namedWindow() 创建命名窗口 imshow() 显示窗口 destroyAllwindws() 摧毁窗口
转载 8月前
81阅读
 第七章 目标检测与识别梯度直方图histogram of oriented gradient图像金字塔 image pyramid滑动窗口 sliding window 1 目标检测与识别 A HOG描述符每个单元包含八个直方图即八个方向(n,nw,w,sw,s,se,e,ne)尺度  检测目标可能位于较大图像中位置  检测图像可能位于
引言目标跟踪(Object Tracking)是计算机视觉领域中的一个重要任务,它可以在视频序列中实时地定位和追踪特定目标的位置。目标跟踪在许多应用中都起着关键作用,如视频监控、自动驾驶、增强现实等。本文将介绍目标跟踪的基本概念、常用方法和挑战,并讨论一些最新的研究进展。目标跟踪的基本概念目标跟踪的目标是在视频序列中实时地追踪特定目标的位置、尺寸和运动状态。目标可以是任何感兴趣的物体,如行人、车辆
目录试错试错1:形态学处理试错2:HSV色彩空间基础理论1、HSV与HSL色彩空间2、PID调节一、OpenCV图像处理1、在HSL色彩空间下得到二值图2、 对二值图形态学处理3、找出线的轮廓和中心点坐标二、PID三、运动控制总代码试错试错1:形态学处理一开始用的形态学处理,自行改变阈值,调试之后,进行处理,发现效果不是太好,于是改成了HSV色彩空间。试错2:HSV色彩空间之前没注意到,HSV色彩
                                                        &nbs
10.2 作品34:触摸屏上的定位在上层的塑料膜和下层的玻璃层之间,触摸屏有两层电阻性的镀膜。一层镀膜是x轴,另一层是y轴。当电流流经每层镀膜,镀膜的阻值会由于不同地方的触摸而不同。这样,测量了每层的电流,就能得到所触摸区域的X和Y坐标。在这个作品中,我们要用Arduino记录屏幕上触摸的位置,然后把这种触摸转换成能够指出屏幕上的区域的整数。10.2.1 硬件需要如下的元件:触摸屏和小板;一个1
OpenCV(开源计算机视觉库介绍) OpenCV是一个用于图像处理、分析、机器视觉方面的开源函数库.  无论你是做科学研究,还是商业应用,opencv都可以作为你理想的工具库,因为,对于这两者,它完全是免费的。 该库采用C及C++语言编写,可以在windows, linux, mac OSX系统上面运行。该库的所有代码都经过优化,计算效率很高,因为,它更专注于设计成为一种用于实时系统
图片操作原理之前描述过一张图片,在计算机程序中,其实是用矩阵来进行描述的,如果我们想对这张图片进行操作,其实就是要对矩阵进行运算。下面列出常见的几种变换矩阵接着来演示 的是图片的位移操作,将一个矩阵的列和行看成坐标系中的x和y就可以轻易的来操作矩阵。import cv2 import numpy as np img = cv2.imread('./timg.jpg', cv2.IMREAD_CO
  • 1
  • 2
  • 3
  • 4
  • 5