泊松分布_51CTO博客
定义:现实生活多数服从于分布假设你在一个呼叫中心工作,一天里你大概会接到多少个电话?它可以是任何一个数字。现在,呼叫中心一天的呼叫总数可以用分布来建模。这里有一些例子:医院在一天内录制的紧急电话的数量。某个地区在一天内报告的失窃的数量。在一小时内抵达沙龙的客户人数。书中每一页打印错误的数量。 分布适用于在随机时间和空间上发生事件的情况,其中,我们只关注事件发生的次数。当以下假设有效时,
例子:已知:【1小时(单位时间)生3个婴儿】==【频率lamda】一、分布:自变量为1小时(t=1)生1个婴儿(n=1)或2个婴儿(n=2)或3个婴儿(n=3)...;因变量分别对应自变量根据公式所算出的概率。二、指数分布:自变量为生出婴儿(不管几个,必须得生出来)至少需要1个小时(t=1)或2个小时(t=2)或3个小时(t=3)...;因变量分别对应自变量根据公式所算出的概率。 注
function possion(lambda) r=poissrnd(lambda,10000,1); mean(r) var(r) rmin=min(r); rmax=max(r); x=linspace(rmin,rmax,rmax-rmin+1); yy=hist(r,x); yy=yy/length(r); bar(x,yy) end
转载 2023-07-28 21:11:12
183阅读
分布Poisson Distribution目录分布Poisson Distribution引言ProblemSolutionReference引言分布是一个时间区间内独立事件发生的概率分布。如果λ是每一定时间间隔平均发生的次数,那么在该时间间隔内发生x次的概率计算公式:Problem如果一架桥上,平均每分钟有12辆车通过,求这座桥某分钟内有17辆或更多车辆通过的概率。Solution
# Draw 10,000 samples out of Poisson distribution: samples_poisson samples_poisson=np.random.poisson(10,size=10000) # Print the mean and standard deviation print('Poisson: ', np.mean(samples_pois
分布分布与指数分布的联系,离散分布参数估计。好短的篇幅。 前两天对两大连续型分布:均匀分布和指数分布的点估计进行了讨论,导出了我们以后会用到的两大分布:\(\beta\)分布和\(\Gamma\)分布。今天,我们将讨论离散分布中的分布。其实,最简单的离散分布应该是两点分布,但由于在上一篇文章的最后,提到了\(\Gamma\)分布分布
https://www.bilibili.com/video/BV1L5411x7vH?p=44北京工业大学运筹学分布与指数分布分布分布就是描述某段时间内,事件具体的发生概率。日常生活中,大量事件是有固定频率的: 某医院平均每小时出生3个婴儿 某公司平均每10分钟接到1个电话 某超市平均每天销售4包xx牌奶粉 某网站平均每分钟有2次访问它们的特点就是,我们可以预估这些事件的总数,但是没
分布定义:如果随机事件A发生的概率是P,进行n次独立试验,恰巧发生了k次,则相应的概率可以用这样一个公式来计算:在实际事例中,当一个事件以固定的平均速率出现时随机且独立地出现时,那么这个时间在单位时间(面积或体积等)内出现的次数或个数近似服从分布。如:某医院平均每小时出生3个婴儿;(单位时间)某公司平均每小时接到3.5个电话;(单位时间)数学性质一:分布是正态分布的一种微观视角,是正态
一个故事:你已经做了10年的自由职业者了。到目前为止,你的平均年收入约为8万美元。今年,你觉得自己陷入了困境,决定要达到6位数。要做到这一点,
学习ScipyScipy基于Numpy上提供了丰富和高级的功能扩展,在统计、优化、插值、数值积分、时频转换等方面提供了大量的可用函数,基本覆盖了基础科学计算相关的问题。import numpy as np import scipy.stats as stats import scipy.optimize as opt统计部分生成随机数rv_continuout.rvs和rv_discrete.rv
主要内容:一、什么是分布二、用Python解决实际问题三、分布的形态变化分布以法国数学家命名,他在1837年出版了一篇关于分布的论文。一、什么是分布分布通常是与固定时间或空间间隔内的计数相关的离散分布。比如:我平均每周写三篇文章,那我下周会写几篇文章?小明平均一个月健身7次,那下个月他会健身几次?马路边上平均每1000米停有20辆车,那下一个一千米停了多少辆车?老板平均
这学期的近代物理实验要做一个研究性实验,本来打算用真空镀膜实验加上椭偏仪实验来测自己做出的薄膜的厚度,后来放弃了,因为镀的银膜太厚了,在老师的carry下,我们做了闪烁探测器验证核衰变规律的实验。这个实验很简单,主要是使用高大上的仪器,但是得自己写实验报告,惨。学过数理统计的都知道,核衰变看作一个随机事件可认为是二项分布,而当二项分布的n和p相乘是一个常数而且n值较大的时候令$\lambda$=n
参数检验的前提是关于总体分布的假设成立,但很多情况下我们无法获得有关总体分布的相关信息。非参数检验正是一类基于这种考虑,在总体方差未知或知道甚少的情况下,利用样本数据对总体分布形态等进行推断的方法。单样本K-S检验用于检验样本是否来自于特定的理论分布的非参数检验方法,这个理论分布可以是正态分布、均匀分布分布或指数分布。下面我们主要从下面四个方面来解说:  实际应用理论思想操作过程分
Poisson分布,是一种统计与概率学里常见到的离散概率分布,由法国数学家西莫恩·德尼·(Siméon-Denis Poisson)在1838年时发表。分布的参数λ是单位时间(或单位面积)内随机事件的平均发生次数。 分布适合于描述单位时间内随机事件发生的次数。当二项分布的n很大而p很小时,分布可作为二项分布的近似,其中λ为np。通常当n≧20,p≦0.05时,就可以用公式近似得
几何分布、二项分布分布都属于离散型概率分布,通过了解这些概率分布的固定模式,可以快速计算其概率、期望和方差等等。一、几何分布 案例:倒霉的滑雪者查德在滑雪过程中经常出事故,因此保险费多了很多开销,他不出事故直接从坡顶顺利滑到坡底的概率是0.2,他打算不停尝试(每一次滑行都是独立的),直至大功告成,那么他需要尝试多少次才能取得一次成功呢?  满足几何分布的条件是:
写这篇文章是看到网上的一篇面试题,有面试官问hashmap有一个loadFactory为什么是0.75 我先解释一下 0.75上下文,当一个hashmap初始数组大小暂时不考虑扩容情况,初始情况下它的值是16,随着hashmap的不断put操作,统计发现桶数组内累加的entry数 除以当下数组长度比如16 大于0.75 那么hashmap就会成倍的扩容数
 分布(Poisson distribution):分布是用来描述在一指定时间范围内或在指定的面积或体积之内某一事件出现的次数的分布。常用的分布例子包括:1. 在某企业中每月发生的事故的次数。2. 单位时间内到达某一服务柜台(服务站、诊所、超市的收银台、电话总机等)需要服务的顾客人数。3. 人寿保险公司每天收到的死亡声明的个数。4. 某种仪器每月出现故障的次数。分布的条件
在学习之前先介绍一个包:Scipy Scipy是一个用于数学、科学、工程领域的常用软件包,可以处理插值、积分、优化、图像处理、常微分方程数值解的求解、信号处理等问题。它用于有效计算Numpy矩阵,使Numpy和Scipy协同工作,高效解决问题。 1、离散概率分布伯努利分布:伯努利试验是只有两种可能结果的单次随机试验(抛硬币) 我们首先用numpy的arange生
一、分布 日常生活中,大量事件是有固定频率的。某医院平均每小时出生3个婴儿某公司平均每10分钟接到1个电话某超市平均每天销售4包xx牌奶粉某网站平均每分钟有2次访问它们的特点就是,我们可以预估这些事件的总数,但是没法知道具体的发生时间。已知平均每小时出生3个婴儿,请问下一个小时,会出生几个?有可能一下子出生6个,也有可能一个都不出生。这是我们没法知道的。分布就是描述某段时间内,事件具体的发
模型检验I:后验估计检验一种检验模型拟合的方法是后验估计检验。这种方法很直观,回顾上节中,我们通过收集 200,000 个 μ 的后验分布样本来对分布的参数 μ进行估计,每个样本都被认为是可信的参数值。后验预测检验需要从预测模型中产生新的数据。具体来说就是,我们已经估计了 200,000 个可信的分布参数值μ,这意味着我们可以根据这些值建立 200,000 个分布,然后从这些分布中随机
  • 1
  • 2
  • 3
  • 4
  • 5