梯度下降法 计算复杂度_51CTO博客
©作者 | 机器之心编辑部梯度下降算法具有广泛的用途,但是关于它的计算复杂度的理论研究却非常少。最近,来自利物浦大学、牛津大学的研究者从数学的角度证明了梯度下降计算复杂度,这项研究也入选 STOC 2021 的最佳论文奖 。当前应用研究的很多方面都依赖于一种名为梯度下降的算法。这是一个求解某个数学函数最大 / 最小值的过程(函数优化),从计算产品的最佳生产方式,到工人轮班的最
机器学习常用的最优化算法本篇blog将介绍梯度下降法、随机梯度下降法、坐标下降法、牛顿法。梯度下降法基本步骤 首先写出梯度下降法的简单步骤: 我们需要最优化的函数是f(x),其中x为向量。 1、初始化向量x。 2、更新x=x-α*▽f(x) 其中 ▽f(x)=∂f(x)/∂(d) d为某维度的单位向量 3、重复这个过程直到收敛。 直观上理解就是,你在一座山的半山腰上,每次往下降最快的地
   一.介绍      梯度下降法(gradient descent)是求解无约束最优化问题的一种常用方法,有实现简单的优点。梯度下降法是迭代算法,每一步需要求解目标函数的梯度向量。    二.应用场景     1.给定许多组数据(xi, yi),xi (向量)为输入,yi为输出。设计一
1、无约束最优化问题求解此问题的方法方法分为两大类:最优条件法和迭代法。2、最优条件法我们常常就是通过这个必要条件去求取可能的极小值点,再验证这些点是否真的是极小值点。当上式方程可以求解的时候,无约束最优化问题基本就解决了。实际中,这个方程往往难以求解。这就引出了第二大类方法:迭代法。最优条件法:最小二乘估计3、迭代法(1)梯度下降法(gradient descent),又称最速下降法(steep
    大部分的机器学习算法的本质都是建立优化模型,通过最优化方法对目标函数(或损失函数)进行优化,从而训练出最好的模型。最常见的最优化方法有梯度下降法、牛顿法。最优化方法:最优化方法,即寻找函数极值点的数值方法。通常采用的是迭代法,它从一个初始点x0开始,反复使用某种规则从x.k 移动到下一个点x.k+1,直至到达函数的极值点。这些规则一般会利用一阶导数信息即梯度, 或者二阶
简述梯度下降法又被称为最速下降法(Steepest descend method),其理论基础是梯度的概念。梯度与方向导数的关系为:梯度的方向与取得最大方向导数值的方向一致,而梯度的模就是函数在该点的方向导数的最大值。现在假设我们要求函数的最值,采用梯度下降法,如图所示:梯度下降的相关概念在详细了解梯度下降的算法之前,我们先看看相关的一些概念。    1. 步长(Learning rate):步长
  在应用机器学习算法时,我们通常采用梯度下降法来对采用的算法进行训练。其实,常用的梯度下降法还具体包含有三种不同的形式,它们也各自有着不同的优缺点。  下面我们以线性回归算法来对三种梯度下降法进行比较。  一般线性回归函数的假设函数为:h θ =∑ n j=0 θ j x j   hθ
梯度下降法求解一元线性回归问题课程回顾下面就使用均方差损失函数来编写程序。问题描述依然是房价预测的问题,这是一个一元线性回归问题。梯度下降法求解求解过程可以分为五步。步骤一加载样本数据 x 和 y步骤二设置超参数 学习率 和 迭代次数步骤三设置模型参数初值 w0,b0步骤四训练模型,使用迭代公式更新模型参数 w ,b步骤五结果可视化程序流程图下图为程序流程图:因为有迭代运算,所以需要通过循环来实现
目录一、什么是梯度下降法?二、梯度下降法的一般求解步骤三、在Excel里用牛顿法、或者梯度下降法求解的近似根四、线性回归问题求解1、最小二乘法2、梯度下降一、什么是梯度下降法梯度下降是迭代法的一种,可以用于求解最小二乘问题(线性和非线性都可以)。在求解机器学习算法的模型参数,即无约束优化问题时,梯度下降(Gradient Descent)是最常采用的方法之一,另一种常用的方法是最小二乘法。在求解
目录1. 前言2.梯度下降法3.牛顿法1. 前言在机器学习与深度学习领域中,通常需要构建模型来进行预测,而损失函数则是代表着当前模型输出的结果与真实结果之间差距的一种量化。由此可知,损失函数越小,模型训练的也就越好。梯度下降法与牛顿法是优化模型,减少损失函数值的两种基本方法,同时两者的本质都是迭代。损失函数通常会有被很多参数制约,在本文中使用  来进行表示和推理(X为向量,可以
在求解机器学习算法的模型参数时,很多情况下会用到梯度下降,这里稍微记一下学习笔记。梯度梯度的本意是一个向量(矢量),表示某一函数在该点处的方向导数沿着该方向取得最大值,即函数在该点处沿着该方向(此梯度的方向)变化最快,变化率最大(为该梯度的模)。————百百科 梯度下降算法本质上就是沿着负梯度方向寻找函数最小值的求解方法梯度下降法是迭代法的一种,以逐渐逼近解为目的求出解的精确值。牛顿方法也是一
一、什么是梯度下降算法梯度下降就是求一个函数的最小值,对应的梯度上升就是求函数最大值,梯度下降法不是机器学习算法,不能用来解决分类或回归问题,而是一种基于搜索的最优化方法,作用是优化目标函数,如求损失函数的最小值。那么为什么我们常常提到“梯度下降”而不是梯度上升“呢?主要原因是在大多数模型中,我们往往需要求函数的最小值。我们得出损失函数,当然是希望损失函数越小越好,这个时候肯定是需要梯度下降算法的
梯度下降法和随机梯度下降法 一、总结 一句话总结: 批量梯度下降法(Batch Gradient Descent):在更新参数时使用所有的样本来进行更新 随机梯度下降法(Stochastic Gradient Descent):求梯度时没有用所有的m个样本的数据,而是仅仅选取一个样本j来求梯度。 小
转载 2020-07-26 23:02:00
959阅读
2评论
浅谈梯度下降法 如果读者对方向导数和梯度的定义不太了解,请先阅读上篇文章《方向导数与梯度》。 前些时间接触了机器学习,发现梯度下降法是机器学习里比较基础又比较重要的一个求最小值的算法。梯度下降算法过程如下:1)随机初始值;2)迭代,直至收敛。表示在处的负梯度方向,表示学习率。 在这里,简单谈一下自己对梯度下降法的理解。首先,要明确梯度是一个向量,是一个n元函数f关于n
1.在线性回归问题中,我们通常使用下面公式来拟合训练集:其中,为特征向量的个数;2.如图假设x是二维的,则有3.  我们可以将损失函数表示为: 4.  我们将目标函数转成求损失函的最小值,该问题已经转换成了最小二乘问题,因此我们可以使用梯度下降法对求最小值。      1) 首先,为了简化问题,我们假设只有一
Gradient DescentΔ\DeltaΔ 哈密顿算子初始位置
原创 2021-08-10 18:15:21
357阅读
方向导数 方向导数指的是曲面上某一点沿任意方向的变化率 我们知道在求偏导的时候,方向被限制在了坐标轴上 所以定义$u=cos\theta_i+sin\theta_j$,用来表示任意方向上的导数 方向导数:=$Duf=\lim_{t\to 0} \frac {f(x_0+tcos\theta,y_0+ ...
转载 2021-10-22 10:30:00
136阅读
2评论
梯度下降法nnn维平面里有mmm个点x1,x2,x3,...,xmx1,x2,x3,...,xmx_1, x_2, x_3, ..., x
原创 2022-11-02 09:49:35
75阅读
https://blog.csd即下山移动一小步之后的位置...
原创 2022-07-18 15:13:10
61阅读
  • 1
  • 2
  • 3
  • 4
  • 5