第1章 有状态的流计算State(状态)是流式应用中普遍存在的一种对象,在流计算整个过程中,算子会不断的对状态进行读取和更新。在Flink当中既有内置的状态,也支持用户自定义状态。算子计算结果保存在state当中,下一笔数据到来时采用上一次计算结果和本次数据一起进行计算。而Flink流计算的状态数据是以state形式存在state backends中。在Flink当中,提及State与Checkp
基本转换算子map:输入一条记录,输出一个结果,不允许不输出flatmap:输入一条记录,可以输出0或者多个结果filter:如果结果为真,则仅发出记录package transform;
import org.apache.flink.api.common.functions.FilterFunction;
import org.apache.flink.api.common.function
一、数据倾斜1、什么是数据倾斜?由于数据分布不均匀,造成数据大量的集中到一点,造成数据热点。数据倾斜原理目前我们所知道的大数据处理框架,比如 Flink、Spark、Hadoop 等之所以能处理高达千亿的数据,是因为这些框架都利用了分布式计算的思想,集群中多个计算节点并行,使得数据处理能力能得到线性扩展。在实际生产中 Flink 都是以集群的形式在运行,在运行的过程中包含了两类进程。其中 Task
转载
2024-03-01 15:05:55
28阅读
第一章 Flink 简介初识FlinkFlink 起源于 Stratosphere 项目,Stratosphere 是在 2010~2014 年由 3 所地处柏林的大学和欧洲的一些其他的大学共同进行的研究项目, 2014 年 4 月 Stratosphere 的代码被复制并捐赠给了 Apache 软件基金会, 参加这个孵化项目的初始成员是Stratosphere 系统的核心开发人员, 2014 年
Flink的Transformation转换主要包括四种:单数据流基本转换、基于Key的分组转换、多数据流转换和数据重分布转换。读者可以使用Flink Scala Shell或者Intellij Idea来进行练习:Flink Scala Shell使用教程Intellij Idea开发环境搭建教程Flink单数据流基本转换:map、filter、flatMapFlink基于Key的分组转换:ke
状态管理流式计算分为无状态和有状态两种情况。无状态的计算观察每个独立事件,并根据最后一个事件输出结果。例如,流处理应用程序从传感器接收温度读数,并在温度超过 90 度时发出警告。有状态的计算则会基于多个事件输出结果。以下是一些例子。所有类型的窗口。例如,计算过去一小时的平均温度,就是有状态的计算。所有用于复杂事件处理的状态机。例如,若在一分钟内收到两个相差 20 度以上的温度读数,则发出警告,这是
转载
2024-02-13 21:42:54
29阅读
1、Map [DataStream->DataStream](1)说明调用用户定义的MapFunction对DataStream[T]数据进行处理,形成新的Data-Stream[T],其中数据格式可能会发生变化,常用作对数据集内数据的清洗和转换。例如将输入数据集中的每个数值全部加 1 处理,并且将数据输出到下游数据集2、FlatMap [DataStream->DataStream]
大家好,我是老兵。Flink基于流编程模型,内置了很多强大功能的算子,可以帮助我们快速开发应用程序。作为Flink开发老手,大多算子的写法和场景想来已是了然于胸,但是使用过程常常会有一些小小的问题:部分算子长时间未用,忘了用法。。某些场景选择什么算子?如何选择?含糊不清。。工欲善其事,必先利其器!快速高效的使用合适的算子开发程序,往往可以达到事半功倍的效果。想着好记性不如烂笔头这个道理,特此整理一
目录Flink DataStream API概述MapFlatMapFilterKeyByReduceWindowWindowAllWindowReduceIterativeStreamProcessFunction Flink DataStream API概述用户通过算子能将一个或多个 DataStream 转换成新的 DataStream,在应用程序中可以将多个数据转换算子合并成一个复杂的数
聊什么在《Apache Flink 漫谈系列 - SQL概览》中我们介绍了JOIN算子的语义和基本的使用方式,介绍过程中大家发现Apache Flink在语法语义上是遵循ANSI-SQL标准的,那么再深思一下传统数据库为啥需要有JOIN算子呢?在实现原理上面Apache Flink内部实现和传统数据库有什么区别呢?本篇将详尽的为大家介绍传统数据库为什么需要JOIN算子,以及JOIN算子在Apach
Flink状态管理flink中的状态由一个任务维护,并且用来计算某个结果的所有数据,都属于这个任务的状态。可以认为状态就是一个本地变量,可以被任务的业务逻辑访问Flink 会进行状态管理,包括状态一致性,故障处理以及高效存储和访问,以便开发人员可以专注于应用程序的逻辑。在flink中,状态始终与特定算子相关联为了使运行时的flink了解算子的状态,算子需要预先注册其状态。总的来说有两种类型的状态:
目录引言算子状态和键控状态算子状态测试代码键控状态测试代码状态数据结构介绍状态后端可用的状态后端类型状态后端的配置代码HashMapStateBackend 状态后端EmbeddedRocksDBStateBackend 状态后端 引言flink 提供了内置的状态淑君管理机制,包括故障发生后的状态一致性维护、以及状态数据的高效存储和访问。用户不用担心状态数据在程序失败及恢复时所引入的一系列问题,
文章目录Operators概述DataStream TransformationsMapFlatMapFilterKeyByReduceWindowWindowAllWindow ApplyWindowReduceUnionWindow JoinInterval JoinWindow CoGroupConnectCoMap, CoFlatMapIteratePhysical Partitioni
文章目录基本概念和特点状态类型列表状态(ListState)联合列表状态(UnionListState)代码实现CheckpointedFunction 接口示例代码 从某种意义上说,算子状态是更底层的状态类型,因为它只针对当前算子并行任务有效,不需要考虑不同 key 的隔离。基本概念和特点算子状态(Operator State)就是一个算子并行实例上定义的状态,作用范围被限定为当前算子任务,与
DataStream API (基础篇)注: 本文只涉及DataStream原因:随着大数据和流式计算需求的增长,处理实时数据流变得越来越重要。因此,DataStream由于其处理实时数据流的特性和能力,逐渐替代了DataSet成为了主流的数据处理方式。目录DataStream API (基础篇)前摘:一、执行环境1. 创建执行环境2. 执行模式3. 触发程序执行二、源算子(source)三、转换
问题现象有个flink实时任务,读kafka和redis,中间有复杂的逻辑处理过程,最终结果写redis。flink实时任务运行一段时间后阻塞了,有时是几个小时后,有时是一两天后。任务看起来正常是正常的,但kafka消费已经停止,checkpoint也失败。看日志,当问题出现后,kafka一直WARN,提示如下Marking the coordinator xxxxxx dead. Marking
转载
2023-12-30 16:34:08
113阅读
1. flink 状态管理包含哪些?Flink 会进行状态管理,包括状态一致性、故障处理以及高效存储和访问,以便开发人员可以专注于应用程序的逻辑。2. flink 状态的类型?算子状态(Operator State) 算子状态的作用范围限定为算子任务键控状态(Keyed State) 根据输入数据流中定义的键(key) 来维护和访问3. 算子状态的特点?算子状态的作用范围限定为算子任务,由同一并行
转载
2024-01-27 21:54:59
43阅读
map package com.shujia.flink.tf import org.apache.flink.api.common.functions.MapFunction import org.apache.flink.streaming.api.scala._ object Demo1Map ...
转载
2021-08-05 19:15:00
164阅读
2评论
文章目录窗口的生命周期Keyed vs Non-Keyed WindowsWindow AssignersTumbling WindowsSliding WindowsSession WindowsGlobal WindowsWindow FunctionsReduceFunctionAggregateFunctionProcessWindowFunctionProcessWindowFunct
在flink中,相同 Task 的多个 Subtask 中,个别Subtask 接收到的数据量明显大于其他 Subtask 接收到的数据量,通过 Flink Web UI 可以精确地看到每个 Subtask 处理了多少数据,即可判断出 Flink 任务是否存在数据倾斜。通常,数据倾斜也会引起反压。keyBy 之前发生数据倾斜如果 keyBy 之前就存在数据倾斜,上游算子的某些实例可能处理的数据较多
转载
2024-02-17 12:58:23
163阅读