harris配准python_51CTO博客
一. Harris基本原理Harris算子是一种基于信号的点特征提取算子,它是对Moravec算子的改进。其基本思想是:在图像中设计一个局部检测窗口,当该窗口沿各个方向做微小移动时,考察窗口的平均能量变化,当该能量变化超过设定的阈值时,就将窗口的中心像素点提取为角点。二. Harris计算过程Harris算子数学方程,如下所示:进行泰勒级数展开等,矩阵形成如下所示:其中,和是图像在和方向的导数,可
转载 2023-07-12 16:27:17
130阅读
1 简介SIFT( 尺度不变特征变换) 算法与 Harris 角点检测算法作为两种经典的图像特征点提取算法,在不同的图像处理中,两者体现出的图像特征点提取性能也不同。因此,如何选取合适的评价指标使两种算法在不同类型图像下提取特征点更高效,将对后续的研究与图像分析工作有重要意义。文中利用常用的折线特征主导的图像与光滑曲线特征主导的图像进行实验,并提出了一种指标
原创 2022-01-16 23:25:06
498阅读
Towards a Practical Face Recognition System: Robust Registration and Illumination by Sparse Representation 2009 CVPR一些概念1.registration :图像(Image registration)就是将不同时间、不同传感器(成像设备)或不同条件下(天候、照度、摄像位置和角
一、SIFT简介SIFT即尺度不变特征变换,是用于图像处理领域的一种描述。这种描述具有尺度不变性,可在图像中检测出关键点,是一种局部特征描述子。 1 SIFT算法特点: (1)具有较好的稳定性和不变性,能够适应旋转、尺度缩放、亮度的变化,能在一定程度上不受视角变化、仿射变换、噪声的干扰。 (2)区分性好,能够在海量特征数据库中进行快速准确的区分信息进行匹配 (3)多量性,就算只有单个物体,也
原创 2021-12-01 14:23:28
140阅读
一、SIFT简介SIFT即尺度不变特征变换,是用于图像处理领域的一种描述。这种描述具有尺度不变性,可在图像中检测出关键点
原创 2021-12-01 14:31:45
107阅读
一、SIFT简介SIFT即尺度不变特征变换,是用于图像处理领域的一种描述
原创 2022-02-21 15:31:39
779阅读
一、SIFT简介SIFT即尺度不变特征变换,
原创 2022-02-22 14:20:19
153阅读
常见一些软件方法介绍1.ARCGIS软件1.1.栅格图像1.打开ArcMap,增加Georeferencing工具条。 2. 把需要进行纠正的影像增加到ArcMap中,会发现Georeferencing工具条中的工具被激活。在view/data  frame  properties的coordinate  properties中选择坐标系。如果是大地(投影
转载 6月前
30阅读
# Python技术的应用与实例 ## 引言 (Registration)是指将不同数据源或不同时间点的数据进行对齐和匹配的过程。在计算机视觉、图像处理、医学影像等领域,技术具有广泛的应用。Python作为一种功能强大的编程语言,提供了多种算法和工具库,能够方便地进行图像、特征匹配和形状对齐等操作。 本文将介绍Python中常用的技术及其应用。首先,我们将概述的基
原创 2023-12-10 08:51:03
65阅读
图像匹配的目的是寻找特征类似的图片,准是得到两幅图像类似的特征点。图像匹配是在大图像中寻找与小图像(模板)相似的区域。图像准是将两幅尺寸相当的图像映射到同一个坐标系中,使它们的特征对应。其中一幅图像的坐标不变,称为固定图像,另一幅图像要平移、旋转、缩放,称为浮动图像。两幅图像后,就可以叠加,称为简单的图像融合。
水利工程中混凝土受压变化检测——CT图像差值处理ENVI——完整的遥感图像处理平台ENVI (The Environment for VisualizingImages)是美国ITT Visual InformationSolutions公司的旗舰产品。它是由遥感领域的科学家采用交互式数据语言IDL(Interactive DataLanguage)开发的一套功能强大的遥感图像处理软件。它是快速、
opencv系列-图像一、简介二、应用场景三、算法分类四、特征点4.1 HarisSIFTSURF五、特征匹配六、全局坐标旋转变换公式的推导围绕原点的旋转坐标系(逆时针)的旋转绕某一点进行旋转仿射变换透视变换与仿射变换opencv函数使用什么是光流(optical flow)?光流法基本原理七、 局部 前言:方面的知识,在工作中多有用到,对于原理了解一些,但是知之不深,最近时间
# 波段Python实用指南 在遥感图像处理和计算机视觉领域,波段准是一个至关重要的步骤。为了对同一场景的不同波段图像进行有效的分析和比较,需要将这些图像对齐。波段的目的是确保同一物体在不同图像中的对应像素准确匹配。本文将详细介绍波段的基本概念,并通过Python代码示例引导你实现这一过程。 ## 波段的基本概念 波段通常应用于多光谱图像、超光谱图像以及多时相图像等。
原创 3月前
64阅读
泛型前言一、super 4pcs1.1 简介1.2原理1.3 开源库介绍 前言最近看了下几种的算法啊,发现会有一些共性,即不管是使用哪种方法,最终大多是关注于如何计算对应点的问题上来,icp及其变种是这样,super 4pcs也是如此。为了减少博客的数,就在这里统一称作为泛型,后续会追加一些同模式的原理。一、super 4pcs1.1 简介Super 4pcs是4pcs的升级版,
一、前言图像准是一种图像处理技术,用于将多个场景对齐到单个集成图像中。在这篇文章中,我将讨论如何在可见光及其相应的热图像上应用图像。在继续该过程之前,让我们看看什么是热图像及其属性。二、热红外数据介绍热图像本质上通常是灰度图像:黑色物体是冷的,白色物体是热的,灰色的深度表示两者之间的差异。 然而,一些热像仪会为图像添加颜色,以帮助用户识别不同温度下的物体。 图1 左图为可见光;有图
为什么需要进行数据?遥感影像数据在成像过程中存在多种几何畸变,需要通过操作对影像/栅格数据集的坐标进行纠正;纸质地图保存过程中存在纸张变形,......; 另一种情形是,在对多个数据集进行分析时,要求所有参与分析的数据集在同一坐标系下,此时也需要进行数据的;什么是数据?数据准是通过参考数据集(图层)对数据集(图层)进行空间位置纠正和变换的过程。 通过确定的算法和控制点信息
本文为印度Rourkela国立技术研究所(作者:Sangeeta Sahu)的硕士论文,共58页。图像准是许多实时图像处理应用中的首要步骤。图像准是将两幅或两幅以上的图像合并到一个坐标系中进行后续分析,有时也被称为图像对齐。它广泛应用于遥感、医学成像、多传感器融合目标识别、利用卫星图像监测某一特定土地的利用情况、从不同医学模式获得的图像对准等疾病诊断,这是图像融合和图像拼接领域的重要一步。本文
Image registration 是指同一目标的两幅或者两幅以上的图像在空间位置的对准。图像技术的过程,称为图像匹配或者图像相关(image matching or image correlation)。 半自动:人机交互方式提取特征(如角点),然后利用计算机对图像进行特征匹配、变换和重采样。 自动:计算机自己完成。基于灰度或者是基于特征。 基于灰度:精度高,缺点是对图像灰度
# Python图像实现流程 ## 1. 介绍图像的概念和应用场景 在图像处理领域,图像准是指将两张或多张图像的空间位置进行对齐,使得它们在几何上完全或近似一致的过程。图像在计算机视觉、医学影像、遥感等领域有着广泛的应用,比如在医学影像中可以用于肿瘤检测和追踪,遥感图像中可以用于地理信息系统等。 ## 2. 图像的步骤和流程 为了帮助小白开发者理解图像的过程,我将列举
原创 2023-11-06 14:54:38
35阅读
## FFDPython实现指南 ### 概述 在本指南中,我将向你介绍如何使用Python实现FFD(Free Form Deformation)。FFD是一种常用的技术,可以对图像或模型进行非刚性变形,使其与目标匹配。我们将使用Python中的一些库来实现这一目标。 ### 整体流程 首先,让我们来看一下整个流程的步骤,以便你能够更好地理解。下面是一个流程表格: ```mer
原创 5月前
89阅读
  • 1
  • 2
  • 3
  • 4
  • 5