存储torch tnesor_51CTO博客
计算机C盘总是莫名其妙的就满了,于是总结了一些清理C盘垃圾以及维护C盘内存的方法。大家有别的有效的方法欢迎告诉我,随时补充。 目录一、 清理C盘垃圾方法1 利用系统自带的磁盘清理工具进行清理2 定期清理系统临时文件3 清理电脑缓存垃圾4 定期清理浏览器垃圾5 清理Window.old文件夹6 清理微信、QQ缓存文件并转移微信和QQ默认存储位置6.1 更改微信存储位置6.2 更改QQ存储位置7 更改
# 存储数据 import scipy.io as sio output_file = "xx.mat" output_dict = {"a":data,"b":data} sio.savemat(output_file,output_dict) # 读取数据 sio.loadmat(output_ ...
转载 2021-05-17 11:02:40
164阅读
2评论
文章目录Torch 入门教程Torch 的基础知识torch和PyTorch什么区别?TensorAutogradOptimizer举例一模型定义模型训练模型保存和加载模型评估举例二数据载入模型定义和训练模型测试总结 Torch 入门教程这是一篇针对 Torch 框架的入门教程,主要介绍 Torch 的基础知识、数据载入、模型定义和训练,以及模型测试。Torch 的基础知识Torch 是一个基于
转载 2023-08-10 11:00:12
185阅读
PyTorch - torch.eq、torch.ne、torch.gt、torch.lt、torch.ge、torch.leflyfishtorch.eq、torch.ne、torch.gt、torch.lt、torch.ge、torch.le以上全是简写参数是input, other, out=None逐元素比较input和other返回是torch.BoolTensorimport torcha=torch.tensor([[1, 2], [3, 4]])b=torch.t
原创 2021-08-12 22:30:12
1652阅读
torch.randn()产生大小为指定的,正态分布的采样点,数据类型是tensortorch.mean()torch.mean(input) 输出input 各个元素的的均值,不指定任何参数就是所有元素的算术平均值,指定参数可以计算每一行或者 每一列的算术平均数例如:a=torch.randn(3) #生成一个一维的矩阵b=torch.randn(1,3) #生成一个二维的矩阵print(a)print(b)torch.mean(a)结果:tensor([-
原创 2021-08-12 22:30:13
1980阅读
亲测可用
我给的示例是chatglm的,有需要的可以换成其他的模型,原理是一样的。
原创 2023-06-24 00:34:13
580阅读
本教程将向您展示如何正确设置音频数据集的格式,然后在数据集上训练/测试音频分类器网络。Colab 提供了 GPU 选项。 在菜单选项卡中,选择“运行系统”,然后选择“更改运行系统类型”。 在随后的弹出窗口中,您可以选择 GPU。 更改之后,运行时应自动重新启动(这意味着来自已执行单元的信息会消失)。首先,让我们导入常见的 Torch 包,例如torchaudio,可以按照网站上的说明进行安装。 #
torch.min、torch.max、torch.argmaxtorch.min、torch.max、torch.argmaxtorch.min、torch.max、torch.argmax
原创 2021-08-02 14:19:55
1293阅读
1 FFT进行一个维度的快速傅里叶变换torch.fft.fft(input, n=None, dim=- 1, norm=None, *, out=None)1.1 主要参数input输入,需要傅里叶变换的tensorn需要变换
一 Pytorch的安装1. Pytorch的介绍Pytorch是一款facebook发布的深度学习框架,由其易用性,友好性,深受广大用户青睐。2. Pytorch的版本3. Pytorch的安装安装地址介绍:https://pytorch.org/get-started/locally/带GPU安装步骤:conda install pytorch torchvision cudatoolkit=
PyTorch 中有一些基础概念在构建网络的时候很重要,比如 nn.Module, nn.ModuleList, nn.Sequential,这些类我们称之为容器 (containers),因为我们可以添加模块 (module) 到它们之中。这些容器之间很容易混淆,本文中我们主要学习一下 nn.ModuleList 和 nn.Sequential,并判断在什么时候用哪一个比较合适。本文中的例子使用
目录【1】在进行神经网络训练的时候,对数据的处理包括:【2】dataset: 【3】dataset tensordataset:【4】使用dataset过程的出错:【1】在进行神经网络训练的时候,对数据的处理包括:使用dataset 构建数据dataloader进行batch的划分Pytorch导入数据主要依靠 torch.utils.data.DataLoader和&nbsp
转载 2024-01-13 21:30:14
39阅读
pytorch和tensorflow函数对应关系方法名称大写一般为类,小写为函数,如A,a,使用方法为A()(),a()作用Pytorchtensorflow平常系列tensor常量troch.tensor()tf.constant()rangetorch.arange()tf.range()求和元素.sum()tf.reduce_sum()随机变量torch.normal()tf.random.
张量tensor 进行 形状shape1. tensor是什么?张量这一概念的核心在于,它是一个数据容器。张量的维度(秩):Rank/Order:        Rank为0、1、2时分别称为标量、向量和矩阵,Rank为3时是3阶张量,Rank大于3时是N阶张量。这些标量、向量、矩阵和张量里每一个元素被称为tensor
这里先介绍下pytorch主要的一些模块分别可以实现什么功能,后续会不断更新每一个模块中具体的API以及代码示例一,torch模块import torch包含了多维张量的数据结构以及基于其上的多种数学操作。另外,它也提供了多种工具,其中一些可以更有效地对张量和任意类型进行序列化。具体包括pytorch张量的生成,以及运算、切片、连接等操作,还包括神经网络中经常使用的激活函数,比如sigmoid、r
转载 2023-09-27 18:59:02
630阅读
一.关于torchscript和jit介绍1.关于torchscriptTorchScript是Pytorch模型(继承自nn.Module)的中间表示,保存后的torchscript模型可以在像C++这种高性能的环境中运行TorchScript是一种从PyTorch代码创建可序列化和可优化模型的方法。任何TorchScript程序都可以从Python进程中保存,并加载到没有Python依赖的进程
本文将介绍:torch.nn包定义一个简单的nn架构定义优化器、损失函数梯度的反向传播将使用LeNet-5架构进行说明  一、torch.nn包torch.nn包来构建网络;torch.nn.Module类作为自定义类的基类;nn.Module,包含了所有神经网络层,比如卷积层或者是线性层;torch.nn.Functional包,可以定义在前向传播的时候的运算;比如,卷积、d
转载 2023-06-05 16:30:59
171阅读
一、加载已有模型直接使用temp=torch.load("E:\\study-proj\\图像分类:从零到亿\\5.使用更多模型\\model_resnet101.pth") #加载模型,如果只有数值就只会加载模型数据,如果有字典,则会加载模型数据和字典数据 model.load_state_dict(temp) #返回是否成功由于模型保存的时候有保存数据和保存数据和字典的方式,所以加载的时候就
torch.gather(input, dim, index, *, sparse_grad=False, out=None) → Tensor参数:input 被索引的tensordim 索引
原创 2022-12-03 00:00:12
542阅读
  • 1
  • 2
  • 3
  • 4
  • 5