一:非局部均值均值滤波:以目标像素点x为中心,对其半径为r的范围内的像素加权求和取平均作为像素点x滤波后的值非局部均值滤波:均值滤波是对目标像素点x范围内的像素点加权求和,但这个权重是人为设定的,一般就是取1,也就是说这个范围内的像素点对中心点x的影响是相同的,这明显不对。那各个像素点对中心点x的权重应该怎么设置呢?非局部均值滤波其实就是计算不同位置像素点对中心点x的影响权重,再进行加和取平均。这
在图像处理中,对图像的滤波是非常常见的一种运算,我们耳熟能详的高斯滤波,双边滤波,导向滤波,而所有的这些滤波其实都是基于局部的一种线性运算。我们知道,几乎所有的滤波或者局部运算都可以表示成如下的这种形式:其中,,是一个归一化系数,上面这个表达式,也就意味着图像中,像素 的值 等于其邻域 的一个线性组合, 表示的就是邻域像素 对于高斯滤波来说,其 为了简化,一般可以假设 , 可以看成是像素
根据滤波器的选频作用分类低通滤波器从0~f2频率之间,幅频特性平直,它可以使信号中低于f2的频率成分几乎不受衰减地通过,而高于f2的频率成分受到极大地衰减。高通滤波器与低通滤波相反,从频率f1~∞,其幅频特性平直。它使信号中高于f1的频率成分几乎不受衰减地通过,而低于f1的频率成分将受到极大地衰减。带通滤波器它的通频带在f1~f2之间。它使信号中高于f1而低于f2的频率成分可以不受衰减地通过,而其
滤波器作为图像处理课程的重要内容,大致可分为两类,空域滤波器和频率域滤波器。本文主要介绍常用的四种滤波器:中值滤波器、均值滤波器、高斯滤波器、双边滤波器,并基于opencv做出实现。空域的滤波器一般可以通过模板对原图像进行卷积进行,卷积的相关知识请自行学习。理论知识:线性滤波器表达公式:,其中均值滤波器和高斯滤波器属于线性滤波器,首先看这两种滤波器均值滤波器:模板:从待处理图像首元素开始用模板对原
转载
2023-11-17 11:07:49
84阅读
1. 简介Non-Local Means顾名思义,这是一种非局部平均算法。何为局部平均滤波算法呢?那是在一个目标像素周围区域平滑取均值的方法,所以非局部均值滤波就意味着它使用图像中的所有像素,这些像素根据某种相似度进行加权平均。滤波后图像清晰度高,而且不丢失细节。2. 原理该算法使用自然图像中普遍存在的冗余信息来去噪声。与双线性滤波、中值滤波等利用图像局部信息来滤波不同,它利用了整幅图像进行去噪。
滤波器主要两类:线性和非线性线性滤波器:使用连续窗函数内像素加权和来实现滤波,同一模式的权重因子可以作用在每一个窗口内,即线性滤波器是空间不变的。如果图像的不同部分使用不同的滤波权重因子,线性滤波器是空间可变的。因此可以使用卷积模板来实现滤波。线性滤波器对去除高斯噪声有很好的效果。常用的线性滤波器有均值滤波器和高斯平滑滤波器。(1) 均值滤波器: 最简单均值滤波器是局部均值运算,即每一个像素只用其
深入理解卡尔曼滤波器(1): 背景知识在介绍卡尔曼滤波器之前,我们先来学习一些跟数学相关的基础知识。均值与期望值均值(Mean)和期望值(Expected Value)是两个相似但不相同的概念。假如我们有2枚5分的硬币和3枚10分的硬币,很容易可以算出它们的均值:上面的结果不能称为期望值,因为系统的状态不是隐式的并且我们用了全部的5枚硬币来计算均值。现在假设一个人连续测5次体重,得到的结果分别为:
文章目录1 均值和非局部均值滤波2 论文【使用新的相似性度量方法做非局部均值滤波】2.1 类相似性度量2.2 参数估计算法2.3 根据非局部上下文信息分类 均值与非局部均值滤波的思想与普通网络和attention网络的思想我认为是一致的,非常像,对我来说认为两者思想一样是一个聚合总结的过程,也许等我了解的更多,我会经历一个发散找到两者不同的过程。 1 均值和非局部均值滤波均值滤波器利用滑窗的方式
在上一篇文章中,我们讲了使用积分图来加速NL-means算法,虽然运算耗时减少了好多,还是没达到毫秒级。所以本文在积分图加速的基础上,进一步使用CUDA来并行加速,使得耗时减少到毫秒级。使用积分图来加速NL-means算法原理,此处给出链接,不再复述:非局部均值滤波(NL-means)算法的原理与C++实现非局部均值滤波(NL-means)算法的积分图加速原理与C++实现1. 使用CUDA并行计算
消除图像中的噪声成分叫作图像的平滑化或滤波操作。信号或图像的能量大部分集中在幅度谱的低频和中频段是很常见的,而在较高频段,感兴趣的信息经常被噪声淹没。因此一个能降低高频成分幅度的滤波器就能够减弱噪声的影响。图像滤波的目的有两个:一是抽出对象的特征作为图像识别的特征模式;另一个是为适应图像处理的要求,消除图像数字化时所混入的噪声。而对滤波处理的要求也有两条:一是不能损坏图像的轮廓及边缘等重要信息;二
非局部均值滤波算法(NL-means)今天来学习一下另一类滤波算法:非局部均值滤波算法(NL-means)。非局部均值滤波算法最早于2005年由Buades等人发表在CVPR上,论文原文:A non-local algorithm for image denoising,还有一篇2011年的论文:Non-Local Means Denoising。之后还会继续介绍DCT(离散余弦变换滤波)、TV(
在上一篇文章中,我们讲解了非局部均值滤波算法的原理,以及使用C++和Opencv来实现了该算法:非局部均值滤波(NL-means)算法的原理与C++实现我们知道,非局部均值滤波是非常耗时的,这很影响该算法在实际场景中的应用。所以后来有研究人员提出使用积分图来加速该算法,可提升数倍的速度。本文我们将详细讲解该算法的积分图加速原理,并使用C++与Opencv来将其实现。积分图的原理我们之前也讲过,此处
均值滤波 一、目的与原理(1)目的:去除图像上的尖锐噪声,平滑图像。(2)原理:均值滤波属于线性滤波,它的实现原理是邻域平均法。其中,公式①的Sxy表示中心点在(x,y)处,M表示大小为m×n的滤波器窗口,M=(2m+1)(2n+1),m和n可以相等。实际上就是用取均值的方式替换原图像中的像素值,即选择一个大小为M模板,该模板由其近邻的若干像素组成,求模板中所有像素的均值,最后填充到输出
在上一篇文章中,我们讲解了非局部均值滤波算法的原理,以及使用C++和Opencv来实现了该算法:非局部均值滤波(NL-means)算法的原理与C++实现我们知道,非局部均值滤波是非常耗时的,这很影响该算法在实际场景中的应用。所以后来有研究人员提出使用积分图来加速该算法,可提升数倍的速度。本文我们将详细讲解该算法的积分图加速原理,并使用C++与Opencv来将其实现。积分图的原理我们之前也讲过,此处
最近开始学习在Denoise方面的内容,在这方面比较重要的传统算法当然是BM3D这种到目前比较fancy的,效果也是目前最好的算法。但是BM3D的一个致命缺点就是速度很慢,所以BM3D我们以后再说吧,我们先讲一下BM3D算法中的基础,Non Local Mean算法。总所周知,很多的简单的降噪算法,都是单Kernel的,例如,均值滤波、中值滤波等,都是使用一个固定的Kernel对图像进行一个滤波操
简介导向滤波(Guided Fliter)显式地利用 guidance image 计算输出图像,其中 guidance image 可以是输入图像本身或者其他图像。导向滤波比起双边滤波来说在边界附近效果较好;另外,它还具有 O(N) 的线性时间的速度优势。 相关工作Explicit Weighted-Average Filters(显式加权平均滤波器)双边滤波可以在平滑
其中,均值滤波的核心思路是取每一个像素点邻域的矩形窗口,计算矩形窗口内所有像素点的像素平均值,作为该点滤波之后的像素值。高斯滤波与均值滤波类似,都是计算矩形窗口内所有像素点的像素值加权和,只不过其权重与均值滤波不一样,高斯滤波的权重服从二维正态分布,越靠近窗口中心点(也即当前滤波点),权重越大。本文我们主要讲非局部均值(NL-means)滤波算法的原理与实现。其核心思路与高斯滤波很相似:计算矩形窗
写在前面从均值滤波开始,着手实现各种常用的滤波算法。均值滤波是一种线性滤波。图像的空域滤波无非分为两种,线性滤波和非线性滤波。由于我之前对线性、非线性理解不够清晰,这次就好好总结一下吧。线性滤波:对邻域中的像素的计算为线性运算时,如利用窗口函数进行平滑加权求和的运算,或者某种卷积运算,都可以称为线性滤波。常见的线性滤波有:均值滤波、高斯滤波、盒子滤波、拉普拉斯滤波等等,通常线性滤波器之间只是模版系
1 均值滤波介绍 滤波是滤波是将信号中特定波段频率滤除的操作,是从含有干扰的接收信号中提取有用信号的一种技术。 均值滤波是典型的线性滤波算法,它是指在图像上对目标像素给一个模板,该模板包括了其周围的临近像素(如3×3模板:以目标象素为中心的周围8个象素,构成一个滤波模板,即去掉目标
转载
2023-10-03 11:37:12
126阅读
平滑滤波器总结
本质:对像素点领域的像素值施于某种算法,以其结果替代锚点处对应的像素值。 平滑(模糊)目的:减少噪声和伪影。 opencv一共提供了5种平滑操作。1.均值滤波器算法原理:以邻域像素点的平均值代替像素点的值。void blur( InputArray src, OutputArray dst,
Size ksize,