19 Canny 边缘检测目标 • 了解 Canny 边缘检测的概念 • 学习函数 cv2.Canny()19.1 原理Canny 边缘检测是一种非常流行的边缘检测算法,是 John F.Canny 在1986 年提出的。它是一个有很多步构成的算法,我们接下来会逐步介绍。19.1.1 噪声去除由于边缘检测很容易受到噪声影响,所以第一步是使用 5x5 的高斯滤波器去除噪声,这个前面我们已经学过了。1
opencv
原创
2022-10-01 01:09:33
400阅读
文章目录5.1 理解斑点检测5.1.1 分割5.1.2 Canny边缘检测5.1.3 轮廓分析 5.1 理解斑点检测斑点是我们可以根据颜色辨别的区域。也许斑点本身有独特的颜色,或者背景有。与“物体”一词不同,“斑点”一词不一定意味着有质量和体积的东西。例如,表面的变化,如污渍,可以是斑点,即使他们有微不足道的质量和体积。光学效果也可以是斑点。例如,镜头的光圈会产生散焦球或失焦高光,使得光线或闪亮
1.原理Difference of Gaussian(DOG)是高斯函数的差分。将两幅图像在不同参数下的高斯滤波结果相减,得到DoG图。步骤:处理一幅图像在不同高斯参数下的DoG 用两个不同的5x5高斯核对图像进行卷积,然后再相减的操作。重复三次得到三个差分图A,B,C。根据DoG求角点 计算出的A,B,C三个DOG图中求图B中是极值的点。图B的点在当前由A,B,C共27个点组成的block中是否
前面说过,图像特征点检测包括角点和斑点,今天来说说斑点,斑点是指二维图像中和周围颜色有颜色差异和灰度差异的区域,因为斑点代表的是一个区域,所以其相对于单纯的角点,具有更好的稳定性和更好的抗干扰能力. 视觉领域的斑点检测的主要思路是检测出图像中比周围像素灰度打或者比周围区域灰度值小的区域,一般来说,有两种基本方法 1.基于求导的微分方法,这成为微分检测器 2.基于局部极值的分水岭算法,OP
今天学习blob的可用于斑点检测,其实这个斑点只是普通的这么叫法,专业点是的Blob是图像中共享某些共同属性(
原创
2022-12-14 16:28:59
984阅读
一、相机模型针孔模型。在这个简单模型中,想象光线是从场景或一个很远的物体发射过来的,但只有一条光线从该场景中的任意特定点进入针孔。我们将这个图像进行抽象,就能够得到这样的结果:其中,f为像到针孔的距离,被称为“焦距”,Z为物到针孔的距离。这里我们讨论的都是理想情况下,光轴上的距离。那么,在该图中,我们可以通过相似三角形得到–x/f = X/Z,或我们重新把针孔相机模型整理成另一种等价形式,使其数学
Blob,这里译为斑点,可以理解为一幅图像中的显著区域。由于其代表的是一个连通区域,在图像匹配中相比于单纯的点具有更高的稳定性。本文将介绍OpenCV中集成的一个简单检测器,SimpleBlobDetector。在此之前,先理解几个算法中会用到的重要概念。Circularity,圆度 圆度是一个反映图形接近于完美圆的程度,其范围为(0,1)。如果该值越接近于0,则该图形越接近一个无限拉长的矩形;如
转载
2023-11-20 08:25:53
149阅读
对于一份试卷,我现在需要检测到填空题上面的横线。如下图: 很多人第一反应是霍夫直线检测,包括我也是想到用霍夫直线检测。然而事实并不尽如人意。因为在我的博客中并没有放上霍夫直线检测这一部分,所以,我用霍夫直线算法来检测试卷上的横线。霍夫直线检测:#include<opencv2/opencv.hpp>
#include<iostream>
#include<math.h
文章目录1. 图像矩2. Canny边缘检测2.1 高斯平滑2.2 图像梯度2.3 非极大值抑制2.4 双阈值2.5 边缘跟踪参考 1. 图像矩前一文介绍了斑点的检测,本文将介绍斑点中心的检测,主要用到了OpenCV中图像矩的概念。图像矩不仅可以描述图像的全局特征,还可以提供大量如图像大小、位置、方向和形状等图像信息。OpenCV中图像矩的计算定义在类Moments中,其部分源码为:Moment
最近在学习进行车道线的端点检测,网上较多的为车道线检测,而缺少端点检测这一方面的内容,于是决定将自己的一些尝试的方法记录下来。使用图像 读取图片非常简单,只需要直接调用opencv读取图片的函数就可以,读取车道线图片后首先进行图片灰度化与边缘检测。 边缘检测Mat gray, b
1.最简单的霍夫变换是在图像中识别直线。在平面直角坐标系(x-y)中,一条直线可以用下式表示:y=kx+b。 这表示参数平面(k-b)中的一条直线。因此,图像中的一个点对应参数平面中的一条直线,图像中的一条直线对应参数平面中的一个点。对图像上所有的点作霍夫变换,最终所要检测的直线对应的一定是参数平面中直线相交最多的那个点。这
转载
2023-08-09 15:26:02
463阅读
霍夫变换(Hough Transform)是图像处理中的一种特征提取技术,它通过一种投票算法检测具有特定形状的物体。该过程在一个参数空间中通过计算累计结果的局部最大值得到一个符合该特定形状的集合作为霍夫变换结果。霍夫变换于1962年由Paul Hough 首次提出[53],后于1972年由Richard Duda和Peter Hart推广使用[54],经典霍夫变换用来检测图像中的直线,
转载
2023-11-25 20:23:56
255阅读
目录1--原理2--Opencv API3--实例代码4--霍夫变换检测圆1--原理 具体原理可参考 博客1 和 视频讲解1; 霍夫变换检测直线的核心思想是:在笛卡尔坐标系下,一条直线(两个点(x1, y1)和(x2, y
Open CV系列学习笔记(十六)直线检测霍夫变换霍夫变换是一种特征检测(feature extraction),被广泛应用在图像分析(image analysis)、计算机视觉(computer vision)以及数位影像处理(digital image processing)。霍夫变换是用来辨别找出物件中的特征,例如:线条。他的算法流程大致如下,给定一个物件、要辨别的形状的种类,算法会在参数空
转载
2024-01-02 13:15:14
144阅读
目标• 理解霍夫变换的概念• 学习如何在一张图片中检测直线• 学习函数:cv2.HoughLines(),cv2.HoughLinesP()原理霍夫变换在检测各种形状的的技术中非常流行,如果你要检测的形状可以用数学表达式写出,你就可以是使用霍夫变换检测它。及时要检测的形状存在一点破坏或者扭曲也可以使用。我们下面就看看如何使用霍夫变换检测直线。一条直线可以用数学表达式 y = mx + c 或者 ρ
一、直线检测1、直线检测cv.HoughLines:使用标准霍夫变换,找到二值图像中的直线lines = cv.HoughLines(
image, # 8-bit、单通道的二值图像
rho, # 累加器的距离分辨率,以像素为单位
theta, # 累加器的角度分辨率,以弧度为单位
threshold, # 累加器的阈值参数,太大会过滤大部分直
1. 什么是斑点斑点通常是指与周围有着颜色和灰度差别的区域。在实际地图中,往往存在着大量这样的斑点,如一颗树是一个斑点,一块草地是一个斑点,一栋房子也可以是一个斑点。由于斑点代表的是一个区域,相比单纯的角点,它的稳定性要好,抗噪声能力要强,所以它在图像配准上扮演了很重要的角色。同时有时图像中的斑点也是我们关心的区域,比如在医学与生物领域,我们需要从一些X光照片或细胞显微照片中提取一些具有特殊意义的
转载
2023-12-24 07:35:00
160阅读
霍夫变换检测霍夫变换之直线检测霍夫变换直线检测前提条件-边缘检测已经完成平面空间到极坐标空间的转换(空间域向霍夫域的转换)检测原理 两点确定一条直线,通过一点可以确定无数条直线,极坐标直线公式 每个点通过角度取不同的值,都能在横坐标为角度值,纵坐标为ρ值的坐标系内确定一条曲线,只要角度值的精细度足够。ρ代表直线到原点的距离。对每个像素采取这样的操作,将会得出很多这样的曲线,这些曲线的交点证明,这些
霍夫变换(Hough Transform)的主要思想: OpenCV的霍夫变换(Hough Transform)直线检测 一条直线在平面直角坐标系(x-y)中可以用y=ax+b式表示,对于直线上一个确定的点(x0,y0),总符合y0-ax0=b,而它可以表示为参数平面坐标系(a-b)中的一条直线。因此,图像中的一个点对应参数平面的一条直线,同样,图像中的
转载
2023-12-27 20:52:09
106阅读