广义线性模型的应用条件_51CTO博客
文章目录线性模型基本概念一元线性回归多元线性回归 X T
提纲:回顾多元线性回归广义线性模型基本形式对数线性回归学习和参考资料 1.回顾多元线性回归在上一篇随笔中,说到了线性模型中最基本一种--多元线性回归,其基本形式如图一所示:图一在多元线性回归中,模型预测值都分布在一条直线上,所以只有当样本点真实分布大致与所求到直线形状相同时,模型才能工作得很好。情况大致如图二所示:图二在图二中,我们认为样本点分布是线性变化,所以我们模型
Part 3 Generalized Linear Models(广义线性模型)在Part1和Part2我们见到了回归模型和分类模型。在回归例子中,我们假设了高斯分布,也就是:。在分类例子中我们选择了伯努利分布,也就是:这两个例子都是由广义线性模型推导出来。接下来还会描述GLM家族中其他模型在前面两个问题中是如何应用。1. The exponential family(
原文链接: 拓端数据科技 / Welcome to tecdattecdat.cn 考虑简单泊松回归 。给定样本 ,其中 ,目标是导出用于一个95%置信区间 给出 ,其中 是预测。因此,我们要导出预测置信区间,而不是观测值,即下图点1. > r=glm(dist
零、前言对于条件分布(y|x;θ),对于线性回归模型有,而对分类问题有。其实这些分布均是广义线性模型(GLM)特殊情况。我们通过定义广义线性模型,可以据此求出拟合函数h(x) 一、指数分布族(Exponential Family)其定义如下其中,η称为自然参数(natural parameter),T(y)称为充分统计量(sufficient statistic)(通常T(y)=y)。
广义线性模型广义广义广义
转载 2023-01-16 08:18:05
264阅读
在机器学习中,有着许多模型,比如传统线性回归模型,logistic回归,soft max回归啊之类很多,那么从传统线性回归模型中我们观察到,这并不能很好解决因变量是离散或者是分类这样情况,经过国内外许多数学界大牛们长期摸索与验证,广义线性模型理论被逐步建立起来,用以解决以往传统线性回归模型缺陷。 在引入广义线性模型之前,有必要先引入指数分布族(exponential fa
       广义线性模型(GLMs)扩展了普通线性回归模型,可以分析非正态分布结果变量以及相应均值函数。假设第i个观察是一个期望值为随机变量实现。当用线性模型来学习随机变量Y时候,我们指明它期望是K个未知参数以及自变量线性组合:                &n
世界中(大部分)各种现象背后,都存在着可以解释这些现象规律。机器学习要做,就是通过训练模型,发现数据背后隐藏规律,从而对新数据做出合理判断。虽然机器学习能够自动地帮我们完成很多事情(比如训练模型参数),但有一些基本事情还是需要我们自己完成,例如概率分布模型选择。比如我们需要判断一封邮件是否为垃圾邮件,由于这是一个二分类问题,在众多概率分布模型之中,伯努利分布(P(y=1)=ϕ,
今天我来介绍一种在机器学习中应用比较多模型,叫做广义线性模型(GLM)。这种模型是把自变量线性预测函数当作因变量估计值。在机器学习中,有很多模型都是基于广义线性模型,比如传统线性回归模型,最大熵模型,Logistic回归,softmax回归,等等。今天主要来学习如何来针对某类型分布建立相应广义线性模型。 Contents    1.&nbsp
原创 2023-06-01 07:56:32
215阅读
 上篇博文中,我们知道了指数分布族,它定义式为: , 这次我们要了解广义线性模型,是基于指数分布族,我们可以通过指数分布族引出广义线性模型(Generalized LinearModel,GLM)。这种模型是把自变量线性预测函数当作因变量估计值。 实际上线性最小二乘回归和Logistic回归都是广义线性模型一个特例。当随机变量y服从高斯分布,η与
Generalized Linear Models 在线性回归模型推导中,我们用到了高斯分布;逻辑回归模型介绍中用到了伯努利分布,今天我们将讲到,这两中分布都是在一个更广义模型里面——Generalized Linear Models。 我们在建模时候,关心目标变量 可能服从很多种分布。像线性回归,我们会假设目标变量 服从正态分布;而逻辑回归,则假设服从伯努利分布。在广义线性模型
以下文章内容摘自网络:说人话统计学 原标题:广义线性模型到底是个什么鬼?❉说人话统计学❉从逻辑回归模型开始,我们连续讲了好多集有些相似又特点各异几种统计模型。它们有个统一旗号,叫做「广义线性模型」(generalized linear model)。 许多在大学里学过一点统计读者,可能对广义线性模型还是会感到比较陌生。为什么这些模型能被归为一个大类?它们共同点在哪里?今天我们就和大家一
广义线性模型(线性回归,逻辑回归)、  线性回归2、广义线性模型  无论是在做分类问题还是回归问题,我们都是在预测某个随机变量y 和 随机变量x 之间函数关系。在推导线性模型之前,我们需要做出三个假设:  1)P(y|x; θ) 服从指数族分布  2)给定了x,我们目的是预测T(y) 在条件x下期望。一般情况下T(y) = y,这也就意味着我们希望预测h(x) = E[y
广义线性模型[generalize linear model(GLM)]是线性模型扩展,通过联系函数建立响应变量数学期望值与线性组合预测变量之间关系。
3.1 广义线性模型3.1.1 模型来源 在广义线性模型中,最常用有六种,由于数据属性原因,在这里我们只讨 论 Logistic 模型、Probit 模型与泊松分布对数线性模型.定性变量,如是否购买,是否离职,性别,为哪个候选人投票,每个 人职业等等,在这一类不可忽略变量影响下,研究人员希望能把这一变量加 入到模型当中,并且让结果以一个概率形式表现出来,从而表达一个事件可 能性,从而进行
常见广义线性模型有:probit模型、poisson模型、对数线性模型等等。对数线性模型里有:logistic regression、Maxinum entropy。 在二分类问题中,为什么弃用传统线性回归模型,改用逻辑斯蒂回归?线性回归用于二分类时,首先想到下面这种形式,p是属于类别的概率:但是这时存在问题是:1、等式两边取值范围不同,右边是负无穷到正无穷,左边是[0,1]2、
这一段主要讲的是广义线性模型定义和假设,为了看明白逻辑回归,大家要耐着性子看完。 1.The exponential family 指数分布族 因为广义线性模型是围绕指数分布族,因此需要先介绍,用NG大神的话说就是,“虽然不是全部,但是我们见过大多数分布都属于指数分布族,比如:Bernoulli伯努利分布、Gaussian高斯分布、multino
参考资料:用python动手学统计学        残差是表现数据与模型不契合程度重要指标。1、导入库# 导入库 # 用于数值计算库 import numpy as np import pandas as pd import scipy as sp from scipy import stats # 导入绘图库 import matplotlib.p
本文主要参考 Andrew NG CSS229 机器学习课程 Lecture notes 1 Part III 部分,简单介绍广义线性模型基本概念,以及如何从广义线性模型出发,由高斯分布、伯努利分布和多项分布,分别得到我们熟悉线性回归、logistic回归和softmax回归模型。1 指数族分布(The Exponential Family)指数族分布指的是一类分布,它们概率密度函
  • 1
  • 2
  • 3
  • 4
  • 5