BP算法 python_51CTO博客
学习日记(2.18) BP神经网络BP神经网络简介BP(back propagation) 神经网络是1986年由Rumelhart和McClelland为首的科学家提出的概念,是一种按照误差逆向传播算法训练的多层前馈神经网络,是目前应用最广泛的神经网络。 BP算法(Back Propagation algorithm, 反向传播算法)
1. 反向传播算法介绍误差反向传播(Error Back Propagation)算法,简称BP算法BP算法由信号正向传播和误差反向传播组成。它的主要思想是由后一级的误差计算前一级的误差,从而极大减少运算量。 设训练数据为\(\{\bm{(x^{(1)},y^{(1)}),\cdots,(x^{(N)}),y^{(N)}}\}\)共\(N\)个,输出为\(n_L\)维,即\(\bm y^{(i)
反向传播算法 BackPropagation ,简称BP算法。常用于训练多层神经网络,那么它到底传播了个啥?又是怎么传播的呢?我们知道,对于一个机器学习算法,其最终预测出的值与实际值一般会存在差异,那么我们定义这个差异为误差E。算法中有若干参数需要学习,那么怎么学习呢?以什么策略去变化参数,使得预测值更接近真实值呢?这就是采用BP算法的初衷,我们知道预测值是由所有参数与相连的输入运算后得到的,也就
反向传播BP模型学习是神经网络一种最重要也最令人注目的特点。在神经网络的发展进程中,学习算法的研究有着十分重要的地位。目前,人们所提出的神经网络模型都是和学习算法相应的。所以,有时人们并不去祈求对模型和算法进行严格的定义或区分。有的模型可以有多种算法.而有的算法可能可用于多种模型。不过,有时人们也称算法 为模型。自从40年代Hebb提出的学习规则以来,人们相继提出了各种各样的学习算法。其中以在19
转载 2023-08-17 23:28:04
107阅读
BP算法求解参数w的算法,神经网络的基础,权重的学习算法都是BP学习算法信号“正向传播(FP)”求损失,“反向传播(BP)”回传误差;根据误差值修改每层的权重,继续迭代输出层误差O代表预测结果,d代表真实结果;系数是为了方便求导时计算隐层的误差netk是当前神经元的wx的结果;f(net)是激活函数,yj代表上一层隐层的输出值输入层误差推导过程Python实现BP神经网络实现对公路客运量impor
反向传播算法是神经网络训练参数与权重的方法之一。该方法与梯度下降算法相结合,对网络中所有权重以及偏置计算损失函数的梯度,并利用梯度值来更新权值与偏置,实现损失函数的最小化。1、前向传播前向传播指的是输入的数据在神经网络中,逐层向前传输,一直到输出层为止。2、反向传播(Back Propagation)在网络的训练过程中经过前向传播后得到的最终结果跟训练样本的真实值总是存在一定误差,由这个误差定义损
转载 2023-07-04 11:38:40
184阅读
BP 算法(Back Propagation Algorithm)是一种经典的人工神经网络训练算法,用于解决分类和回归问题。BP 算法基于梯度下降的思想,通过反向传播误差信号来调整神经网络的权重和偏置,从而实现模型的训练。BP 算法通常由前向传播和反向传播两个过程组成。在前向传播过程中,神经网络将输入样本通过多层神经元进行计算,得到输出值。在反向传播过程中,首先计算输出值与实际标签之间的误差,然后
前言:      BP(back propagation)神经网络是1986年由Rumelhart和McClelland为首的科学家提出的概念,是一种按照误差逆向传播算法训练的多层前馈神经网络。      主要应用在 函数逼近,模式识别,分类,数据压缩(降低数据维度)  算法 优点:广泛的
转载 2023-08-24 20:37:29
247阅读
学习是神经网络一种最重要也最令人注目的特点。在神经网络的发展进程中,学习算法的研究有着十分重要的地位。目前,人们所提出的神经网络模型都是和学习算法相应的。所以,有时人们并不去祈求对模型和算法进行严格的定义或区分。有的模型可以有多种算法。而有的算法可能可用于多种模型。不过,有时人们也称算法为模型。自从40年代Hebb提出的学习规则以来,人们相继提出了各种各样的学习算法。其中以在1986年Rumelh
误差逆传播算法,又称BP算法,被誉为神经网络中最好的算法,其广泛应用在多层网络中。在这之前,我们先来理解几个概念M-P神经元模型所谓M-P模型,其实是按照生物神经元的结构和工作原理构造出来的一个抽象和简化了的模型。对于第 j 个神经元,接受多个其它神经元的输入信号xi 。各突触强度以实系数w表示,这是第i个神经元对第 j 个神经元作用的加权值。多层神经网络结构学习率...
原创 2022-11-17 00:39:43
267阅读
# BP算法及其应用 BP(Back Propagation)算法是一种常用的神经网络训练算法。它通过反向传播误差来调整网络的权重和偏置,从而实现对样本数据的分类或者回归预测。本文将介绍BP算法的原理、实现以及应用,并提供Python代码示例。 ## 1. BP算法原理 BP算法是一种有监督学习算法,包含两个阶段:前向传播和反向传播。首先,输入样本通过前向传播得到输出结果;然后,通过比较输出
原创 2023-08-26 06:38:35
156阅读
        BP算法是训练神经网络的一种算法,其是一种计算神经网络可训练参数的梯度的高效算法,正是因为BP算法的提出和在工程上的实现,使得深度神经网络模型可以比较轻易的训练。        BP算法是建立在梯度下降的优化算法基础之上的,正是因为我们使用了梯度下降的方法来优化我们的模型,我们才有计算参数梯度的需求。当
BP算法推导BP算法(BackPropagation)反向传播算法又叫误差逆传播算法(error BackPropagation),它是迄今最成功的神经网络学习算法。 现在从神经网络训练的角度推导BP算法。 给定训练集D={(x1,y1),(x2,y2),⋯,(xm,ym)},xi∈Rd,yi∈Rl D =
目录一、理论知识回顾1、神经网络模型2、明确任务以及参数1)待估参数:2)超参数:3)任务3、神经网络数学模型定义1)激活函数2)各层权重、阈值定义3)各层输入输出定义4、优化问题的目标函数与迭代公式1)目标函数2)待估参数的优化迭代公式二、python编程1、编程步骤2、数据准备、数据处理、数据划分1)数据下载2)关键代码3、初始化待估参数1)关键代码2)np.random.randint(a,
PBC(Pairing-Based Cryptography Library) 是实现双线性对运算的函数库 . 这个开源代码 C 函数库是由Stanford 大学开发 ,库的地址为 http://crypto.stanford.edu/pbc/.具体的安装步骤看我之前写的博客:这次讲一讲在学习使用这个库中的心得:(一)包的初始化在pypbc库中,有个对象:Element,Pairing,Param
转载 2023-09-04 13:37:30
348阅读
前言 算法实现的过程,我感觉就是把数学推导公式翻译成代码的过程,关于详细的算法思想介绍,已经写在了上一篇博客中,需要参考的可以点这一个,这里重点是实现BP算法。 一、代码实现 我不啰嗦了,直接上代码了,因为看了理论之后,很容易就能读懂代码,而且每一行代码我都加了详细的注释。""" BP算法的简单实现,这里只有三层网络,目的在于说明其执行过程 调试时可以控制输入的迭代次数和学习率,这样可以动态地看执
梯度消失指的是  权重不断更新,直观上看是从最后一层到第一层权重的更新越来越慢,直至不更新其本质原因是反向传播的连乘效应,导致最后对权重的偏导接近于零。另外一个网友的解释:sigmod函数的导数----x*(1-x) 反向传播的时候是一个链式偏导,神经元经过前向传播sigmod函数激活后就是一个0到1之间的数,现在还乘以1-x,两个小数相乘,乘的多就趋于0了,梯度就是0了。另外一个比较完
转载 2023-07-24 15:45:36
73阅读
简介 BP(Back Proragation, BP)误差反向传播算法 它是具有指导训练的前馈多层网络训练算法,是靠调节各层的权值,使网络学会由输入输出对组成的训练组。其核心思想是将输出误差以某种形式通过隐含层向输入层逐层反传,即: 信号正向传播;误差反向传播 执行优化的方法是梯度下降法 最常用的激 ...
转载 2021-07-27 16:37:00
375阅读
2评论
反向传播算法 解释算法流程
转载 2019-12-28 17:09:00
192阅读
2评论
首先什么是人工神经网络?简单来说就是将单个感知器作为一个神经网络节点,然后用此类节点组成一个层次网络结构,我们称此网络即为人工神经网络。当网络的层次大于等于3层(输入层+隐藏层(大于等于1)+输出层)时,我们称之为多层人工神经网络。   BP(Back Propagation,后向传播)算法是迄今最成功的神经网络学习算法,现实任务中使用神经网络时,大多是在使用BP算法进行训练[2],包括最近炙
原创 2021-05-07 16:29:51
1718阅读
  • 1
  • 2
  • 3
  • 4
  • 5