数据降维_51CTO博客
1、背景高数据数灾难        在高情况下出现的数据稀疏,计算距离困难情况下,是所有机器学习都要面临的严峻问题,称为数灾难。        当一个维度上的数据相对较多时,增加维度会拉伸该维度上的点,使它们更加分开,导致更加稀疏,由于等距离,距离测量变得毫无意义。2、技术概述   
转载 2023-11-09 15:51:50
121阅读
1. 纬度  纬度是数据集中特征的数量。2.   是对给定数据集进行(特征)的过程。也就是说,如果数据集有100列/特性,并将列数减少到了20-25列。2.1 的好处  随着特征数量的增加,数据点的数量也会成比例地增加。即越多的特征会带来更多的数据样本,模型的性能会提升。当数据纬度过大时,会造成“纬度灾难”,导致模型的性能降低。因此应当对数据进行处理,使模型性能达到最优。它有助
转载 2024-01-02 11:17:27
60阅读
1. 基于特征选择的 这种方法的好处是,在保留了原有维度特征的基础上进行。 例如通过决策树得到的特征规则,可以作为选择用户样本的基础条件,而这些特征规则便是基于输入的维度产生。假如在决策树之前将原有维度表达式(例如PCA的主成分)方法进行转换,那么即使得到了决策树规则,也无法直接应用于业 ...
转载 2021-08-23 17:16:00
499阅读
数据:定义:特征的数量减少特征选择:原因:1、冗余部分特征相关性高,容易消耗计算机性能2、噪声:部分特征对预测结果有负影响工具:1、Filter(过滤式):VarianceThreshold   (sklearn.feature_selection.VarianceThreshold)2、Embedded(嵌入式):正则化、决策树3、Wrapper(包裹式)方差大小来考虑P
1.简介     在另一篇文章中讲了利用PCA对图片数据进行,这次介绍一下另一种方法——LDA(Linear Discriminant Analysis),即线性判别分析。跟PCA不同,LDA是一种supervised的方法。即我们对数据时需要数据的label。    LDA的原理是要找到一个投影面,使得投影后相
作为目前很多研究领域的重要研究分支之一,其方法本身就多种多样,根据方法的不同,产生了很多基于的聚类方法,如Kohonen自组织特征映射(self-organizing feature map,SOFM) 、主成分分析(Principle component analysis,PCA) 、多维缩放(Multi-dimensional scaling ,MDS) 等。此外还有一种特殊的
转载 2023-07-27 22:20:30
220阅读
目录主成分分析--PCA数据规约产生更小但保持数据完整性的新数据集。在规约后的数据集上进行数据分析和挖掘将更有效率。机器学习领域中所谓的就是指采用某种映射方法,将原高维空间中的数据点映射到低维度的空间中。的本质是学习一个映射函数 f : x->y,其中x是原始数据点的表达,目前最多使用向量表达形式。 y是数据点映射后的低向量表达,通常y的维度小于x的维度(当然提高维度也是可以的)。
from sklearn.preprocessing import StandardScaler X_scaler = StandardScaler() y_scaler = StandardScaler() X_train = X_scaler.fit_transform(X_train) y_train = y_scaler.fit_transform(y_train) X_test = X_
转载 2023-11-20 02:14:08
0阅读
在原始的空间中,包含冗余信息以及噪音信息,在实际应用中总会产生误差,降低了准确率,我们希望减少冗余信息所造成的误差,提升识别精度。又或者希望通过算法寻找内部的本质结构特征。数据的目的:维度降低便于可视化和计算,深层次的含义在于有效信息的特征提取以及无用信息的抛弃。线性映射:PCA以及LDA:PCA:通过某种线性投影,将高数据映射到低维空间中,并希望在所投影后的维度数据方差最大,以此使用较
转载 2023-12-26 17:30:18
18阅读
1.原理的概述由于特征数据过于庞大,需要对数据进行处理,即通过某种映射方法将原始高维空间中的数据点映射到低维度的空间中(减少特征的个数),比较经典的是LDA线性判别分析(Linear Discriminant  Analysis)和PCA主成分分析。LDA线性判别分析也叫作Fisher 线性判别(FLD)(有监督问题),最初用于机器学习的分类任务,更多用于不仅要压缩数据
主成分分析(PCA)PCA 是一种基于从高维空间映射到低维空间的映射方法,也是最基础的无监督算法,其目标是向数据变化最大的方向投影,或者说向重构误差最小化的方向投影。它由 Karl Pearson 在 1901 年提出,属于线性方法。与 PCA 相关的原理通常被称为最大方差理论或最小误差理论。这两者目标一致,但过程侧重点则不同。 最大方差理论原理 将一组 N 向量降为
1.什么是LDA?LDA线性判别分析也是一种经典的方法,LDA是一种监督学习的技术,也就是说它的数据集的每个样本是有类别输出的。这点和PCA不同。PCA是不考虑样本类别输出的无监督技术。LDA的思想可以用一句话概括,就是“*投影后类内方差最小,类间方差最大*”。什么意思呢? 我们要将数据在低维度上进行投影,投影后希望每一种类别数据的投影点尽可能的接近,而不同类别的数据的类别中心之间的距
转载 2023-05-18 15:32:20
234阅读
1点赞
来源:博客园链接:https://www.cnblogs.com/guoyaohua/p/8855636.html引言:  机器学习领域中所谓的就是指采用某种映射方法,将原高维空间...
转载 2021-07-12 17:54:26
972阅读
来源:博客园链接:https://www.cnblogs.com/guoyaohua/p/8855636.html引言:  机器学习领域中所谓的就是指采用某种映射方法,将原高维空间...
转载 2021-07-12 17:54:27
790阅读
secom.data 3030.93 2564 2187.7333 1411.1265 1.3602 100 97.6133 0.1242 1.5005 0.0162 -0.0034 0.9455 202.4396 0 7.9558 414.871 10.0433 0.968 192.3963 12
转载 2017-07-05 11:27:00
180阅读
2评论
# Python数据的实现流程 下面是Python数据的实现流程的表格: | 步骤 | 描述 | | --- | --- | | 1 | 导入必要的库 | | 2 | 加载数据 | | 3 | 数据预处理 | | 4 | 实施算法 | | 5 | 可视化结果 | 接下来,我们将逐步解释每个步骤所需的代码及其注释。 ## 1. 导入必要的库 在之前,我们需要导入一些必要
原创 2023-07-14 03:34:44
84阅读
   最近在学习的过程当中,经常遇到PCA,于是就学习了PCA的原理,并用网上下载的iris.txt数据集进行PCA的实践。为了方便以后翻阅,特此记录下来。本文首先将介绍PCA的原理,然后进入实战,编写程序对iris.数据集进行。一、为什么要进行数据?    在数据处理中,经常会遇到特征维度比样本数量多得多的情况,如果直接放到机器学习
前几个章节我们将了机器学习的基础知识以及数据预处理和特征选择,本章节我们将讲述数据,在次之前,首先我们要明白为什么要进行数据操作?加快运算速度有利于防止过拟合(但防止过拟合最好的方法却是正则化)减少用来存储数据的空间2.3数据当特征选择完成之后,可以直接训练模型,但是可能由于矩阵过大,导致计算量大,训练时间长的问题,因此降低特征矩阵维度也就必不可少了。数据可以保证原始数据信息量没有
本节书摘来自华章出版社《R语言数据挖掘》一书中的第1章,第1.13节,作者[哈萨克斯坦]贝特·麦克哈贝尔(Bater Makhabel),李洪成 许金炜 段力辉 译,1.13 数据在分析复杂的多变量数据集时,降低维度往往是必要的,因为这样的数据集总是以高形式呈现。因此,举例来说,从大量变量来建模的问题和基于定性数据多维分析的数据挖掘任务。同样,有很多方法可以用来对定性数据进行数据。降低
1.主成分分析(Principal components analysis,以下简称PCA)是最重要的方法之一。在数据压缩消除冗余和数据噪音消除等领域都有广泛的应用。一般我们提到最容易想到的算法就是PCA,目标是基于方差提取最有价值的信息,属于无监督问题。但是后的数据因为经过多次矩阵的变化我们不知道后的数据意义,但是更加注重后的数据结果。2.向量的表示及基的变换(基:数据的衡
  • 1
  • 2
  • 3
  • 4
  • 5