文章目录1 前言2 数据准备3 数据预处理4 Bert-BiLSTM-CRF模型5 Bert-CRF模型6 模型训练7 结果评估8 训练集流水线9 测试集流水线10 记录遇到的一些坑11 完整代码 1 前言2 数据准备使用了transformers和seqeval库 安装方法: huggingface-transformersconda install -c huggingface transf
转载
2023-07-04 21:52:16
274阅读
这一部分的源码主要实现在create_pretraining_data.py和tokenization.py两个脚本里。先介绍主要部分:create_pretraining_data.py这里小标1,2用的太多了,为了方便区分,我用了不同颜色(红、橙、绿)的小标表示,同一个颜色是一个部分的;脚本中用到的函数,我用紫色的进行了标识。源码地址:https://github.com/google-res
转载
2024-01-08 17:51:01
83阅读
Bert(预训练模型)动机基于微调的NLP模型预训练的模型抽取了足够多的信息新的任务只需要增加一个简单的输出层注:bert相当于只有编码器的transformer基于transformer的改进每个样本是一个句子对加入额外的片段嵌入位置编码可学习< cls >为分类 < sep >用来分隔句子 有两个句子前一个id为0后一个id为1BERT选择Transformer编码器作
转载
2023-09-09 06:40:18
149阅读
准备数据集这里我并没有用什么大型的数据集,而是手动输入了两个人的对话,主要是为了降低代码阅读难度,我希望读者能更关注模型实现的部分'''
code by Tae Hwan Jung(Jeff Jung) @graykode, modify by wmathor
Reference : https://github.com/jadore801120/attention-is-all-you-
转载
2023-10-19 17:11:14
122阅读
前言前几天面试,有面试官直接拿 bert 的源码让我分析,emm, 有点厉害呀。 还好老宋底子可以, 之前看过 Transformer 的实现,自己也用 Transformer 写了一下文本分类任务,没有难住我,哈哈哈哈。 不过,看来,如今,面试官们已经不满足仅仅只问原理了, 倒也是,如何看出一个人的代码能力,看看他读源码的能力就能看得出来。因此,老宋觉得各位真的要看一看 Bert
转载
2023-11-27 11:28:15
10阅读
Bert是去年google发布的新模型,打破了11项纪录,关于模型基础部分就不在这篇文章里多说了。这次想和大家一起读的是huggingface的pytorch-pretrained-BERT代码examples里的文本分类任务run_classifier。关于源代码可以在huggingface的github中找到。 huggingface/pytorch-pretrained-
转载
2023-10-28 15:07:25
129阅读
一、他说的是对的前几天看到一篇关于大连理工大学的研三学长的去世新闻,仔细看了他的遗书,很是泪目。他说同样的条件,做出的实验结果是不同的。 在训练我这个模型的时候,深深体会到了这个感受,有时候收敛,有时候无论怎么也不收敛。可能这个还容易解释一点,模型的很多参数是初始化的,不同的参数会跑到局部最you,模型陷在了一个局部最优点,出不去。 可能我这个模型的结构和参数都有问题,在训练过程中,损失最低也就是
model.py对transformers的bert源码的解读 # coding=utf-8
from __future__ import absolute_import, division, print_function, unicode_literals
import copy
import json
import logging
import math
import os
im
转载
2023-07-06 12:32:05
285阅读
# BERT预训练在PyTorch中的实现
随着自然语言处理(NLP)技术的发展,BERT(Bidirectional Encoder Representations from Transformers)作为一种强大的预训练模型受到了广泛关注。BERT的出现极大地提高了文本理解的能力,尤其在问答、文本分类等多个任务上展示了其优越性。本文将详细介绍如何在PyTorch中实现BERT的预训练,并提供
BERT模型介绍一、什么是BERT?BERT:全称是Bidirectional Encoder Representation from Transformers,即双向Transformer的Encoder,BERT的模型架构基于多层双向转换解码,因为decoder是不能获要预测的信息的,模型的主要创新点都在pre-traing方法上,即用了Masked LM和Next Sentence Pred
转载
2024-01-20 19:54:14
95阅读
本文主要是针对入门级别的Bert使用,先让模型能够实现文本分类,后续会讲解huggingface的Bert流程化的使用,包括英文文本分类和中文文本分类。英文部分使用BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding中的Cola数据集,任务如下图 这个数据集包括四列:[‘sentence_s
转载
2023-07-04 21:49:21
269阅读
# PyTorch实现Transformer和BERT源码解读
近年来,Transformer及BERT模型在自然语言处理(NLP)领域引起了广泛关注。本文将深入探讨如何使用PyTorch实现这两种模型,带领读者理解其核心构件和基本原理。
## Transformer模型简介
Transformer是由Vaswani等人在2017年提出的模型,它依靠自注意力机制来捕捉序列中的长距离依赖关系。
在前面两章Bert 和 TextCNN 模型,用这两个模型来进行文本分类。那我们就可以试一下将这两个模型进行融合来进行文本分类。模型介绍我们知道在进行模型融合时,要注意的时在第一个模型的输出要符合第二个模型的输入。Bert 模型的输出是有不同的情况;TextCNN模型的输入是一个四维的,[bacth_size, 1, max_len, bedding]。Bert 模型输出 图1 bert
转载
2023-11-01 15:45:43
206阅读
概述本文基于 pytorch-pretrained-BERT(huggingface)版本的复现,探究如下几个问题:pytorch-pretrained-BERT的基本框架和使用如何利用BERT将句子转为词向量如何使用BERT训练模型(针对SQuAD数据集的问答模型,篇幅问题,可能下篇再写)因为已经有很多文章对BERT的结构和效果做了详尽的介绍,所以对于模型的效果和结构就不在这里赘述了。
引入Bert-bilistm-crf进行命名体识别其实就是在bilstm-crf的基础上引入bert词向量,pytorch官网给出了的bilstm-crf的模板代码,但是pytorch官方的bilstm-crf的代码存在两个问题:1. 代码的复杂度过高,可以利用pytorch的广播计算方式,将其复杂度降低。2.官方代码的batch_size仅仅为1,实际运用时需要将batch_size调大。对于问
转载
2023-07-10 15:59:37
367阅读
# 使用PyTorch进行BERT模型构建与训练
在本篇文章中,我们将学习如何使用PyTorch构建和训练BERT模型。BERT(Bidirectional Encoder Representations from Transformers)是由Google提出的一种预训练模型,极大地推动了NLP(自然语言处理)领域的发展。本指南将带你从基础到实战,帮助你掌握这一强大的工具。
## 流程概述
# 深度学习中的预训练模型:BERT与PyTorch
在深度学习领域,预训练模型是一种非常重要的技术,它可以通过在大规模的语料库上进行预训练,然后在特定任务上进行微调,从而取得出色的性能。BERT(Bidirectional Encoder Representations from Transformers)是一种非常流行的预训练模型,它由Google在2018年提出,通过Transformer
前言bert作为当下最火的NLP模型(或者说该类型的模型,包括AlBert,XLNet等)。对于志在NLP的同学,有必要对其原理和代码都进行比较深入的了解。废话不多说,进入正题。 PS:1.这里的代码有些参数传入是阉割过的,而且代码版本也是比较老版的,但更容易理解,更详细的还是参考:https://huggingface.co/transformers/ 2.关键的注解都在代码的注释里。主要代码1
本文是学习使用Huggingface的Transformers库的简单实践,我们简单的梳理一下模型的结构,以及具体的程序结构。我用的是Pytorch,虽然代码比较简单,但还是附上地址:https://github.com/zuochao912/Bert_CRF。1、任务目标本文的任务目标在于利用预训练的语言模型,辅助下游的英语的平坦命名实体识别任务。2、模型结构主要包括四大模块:tokenizer
转载
2024-01-16 17:29:16
153阅读
文章目录pytorch版的bert分类模型流程,后加bert_BiLSTM融合对比一.前言版本详述数据预处理定义模型参数预训练模型下载 放在bert_model 包含config.json,pytorch_model.bin,vocab_txt二.完整代码github链接三.上代码import1.预处理数据2.定义bert模型3.定义优化器和线性学习率4.定义训练函数和验证测试函数5.开始训练6
转载
2023-10-30 17:29:23
0阅读