梯度下降的矩阵分解公式推导与实例分析注:此博客只是作者在学习的过程中的一些记录和浅疏的理解,内容多为借鉴和自己的一些总结。当我们了解和学习过梯度下降之后,对于矩阵分解的学习会更直接易懂。 矩阵分解就是将一个大的矩阵分解成两个行对应列相等的两个小矩阵,用两个小的矩阵去预测大的矩阵的取值通。俗来说就是矩阵相乘的逆运算。在这里我们还要借用损失函数,构造损失函数(loss function)。接下来让我们
转载
2023-10-19 21:17:14
143阅读
导数导数 就是曲线的斜率,是曲线变化快慢的一个反应。二阶导数 是斜率变化的反应,表现曲线的 凹凸性偏导数固定其他变量,对其中一个变量求导。关于梯度的理解在一元函数中,梯度就是导数,导数是曲线变化快慢的反应,沿着导数变化快的方向,可以取到最大值。 多元函数类似。 在微积分里面,对多元函数参数求偏导数,把求的各参数的偏导数以向量的形式写出来,就是梯度。 梯度是一个向量,表示某一函数在该点处的方向导数
# 深度学习复合函数求梯度
## 介绍
在深度学习中,我们经常需要对复合函数求梯度。复合函数是由多个函数组合而成的函数,求解复合函数的梯度可以帮助我们优化模型的参数。本文将介绍如何使用代码实现深度学习复合函数的梯度计算。
## 整体流程
下面是整个流程的步骤表格:
| 步骤 | 描述 |
| ---- | ---- |
| 1 | 定义函数 |
| 2 | 定义变量 |
| 3
原创
2023-08-20 08:11:05
442阅读
前面我们讲了深度强化学习,虽然强化学习和深度学习得到了一个很好的结合,但是他们在实际的使用中还是有一些限制的,比如算法模型容易过估计、无法处理连续动作控制任务。尤其是无法使用连续动作这个缺点,极大的限制了DQN的使用。所以本节就来学习可以处理连续动作的深度确定性策略梯度算法(DDPG)。1、背景介绍在2014年首次提出了确定性策略梯度算法,并证明了该算法对连续动作任务的有效性。该算法在策略梯度算法
机器学习是一门通过让机器自动从数据中学习规则的研究学科 在机器学习中,有一门通过神经网络来学习复杂、抽象逻辑的方向,称为神经网络。 深层神经网络有了一个新名字,叫做深度学习,深度学习特指基于深层神经网络实现的模型或算法 机器学习可以分为有监督学习(Supervised Learning)、无监督学习(Unsupervised Learning)和强化学习(Reinforcement Learnin
简单的案例 目录简单的案例内容概况一、初始案例输出二、储备知识1.grad_fn属性2.叶子张量与根张量三.计算梯度1、叶子张量的梯度2、获取内部张量的梯度四.计算分支张量对于叶子张量的梯度 内容概况 举一个简单的例子:来记录下张量在梯度计算中的作用 一、初始案例输出requires_grad=Falseimport torch
x = torch.tensor([[1,2]],dtype=to
文章目录一、简介二、Logistic回归三、代码实战3.1 加载数据3.2 函数3.3梯度上升算法3.4绘制数据集3.5主函数四、总结 一、简介通过Logistic回归和梯度上升两方法开始,首先从原理开始推论。二、Logistic回归链接: 可以参照之前写过的文章(吴恩达机器学习课里面的) 因为里面公式推导都是类似的,因此可以直接拿来用这个例子主要是主要用来模拟迭代的方式。就像爬坡一样,一点点的
梯度导数是个标量,反应的是变化的程度,即“大小” 显然,位于这两平面的不同的两个点的位置的函数值的变化程度是不一样的,即导数不同同样,偏微分,即偏导数,也是标量,只不过它是在自变量的方向上的变换的程度(自变量不只一个)而梯度是一个向量 梯度就是所有的偏微分,带上其方向的向量这里箭头所代表的方向和大小就是梯度箭头的长度就是梯度的大小,
本篇是摘抄pytorch-handbook里面的,有兴趣可以看看。损失函数(Loss Function)损失函数(loss function)是用来估量模型的预测值(我们例子中的output)与真实值(例子中的y_train)的不一致程度,它是一个非负实值函数,损失函数越小,模型的鲁棒性就越好。 我们训练模型的过程,就是通过不断的迭代计算,使用梯度下降的优化算法,使得损失函数越来越小。损失函数越小
0. 标量、向量、矩阵互相求导的形状 标量、向量和矩阵的求导(形状) 标量x (1,) 向量x (n,1) 矩阵X (n,k) 标量y (1,) $\frac{\partial y}{\partial x}$ (1,) $\frac{\partial y}{\partial\textbf x}$ ( ...
转载
2021-08-14 10:45:00
545阅读
2评论
什么是梯度下降法梯度下降 Gradient Descent:本身不是一个机器学习的算法,而是一种基于搜索的最优化方法。 作用:最小化一个损失函数。 梯度上升法:最大化一个效用函数。η称为学习率(learning rate)η的取值影响获得最优解的速度:如当η过小,需要经过非常多次的迭代η取值不合适,甚至得不到最优解:如当η过大,可能不能到达使目标更小的点η是梯度下降法的一个超参数初始点:并不是所有
目录 梯度下降求极值 导数 偏导数 梯度下降 机器学习&深度学习 学习形式分类 1) 有监督学习
原创
2023-11-03 14:19:39
91阅读
ad PyTorch提供的autograd包能够根据输入和前向传播过程自动构建计算图,并执行反向传播。 2.3.1 概念 上一节介绍的T
转载
2020-05-02 19:36:00
98阅读
2评论
梯度与导数:梯度是某一函数在该点处的方向导数沿着该方向取得最大值,即函数在该点出沿着该方向(此梯度的方向)变化最快,变化率最大(为该梯度的模)方向导数:对于多元函数来说,除了沿坐标轴方向上的导数,在非坐标轴方向上也可以求导数,这些导数就是方向导数。导数用来反映某一函数的变化率,某一特定点的导数就是该点的“瞬间斜率”,即切线斜率。所以,在单变量的实值函数中,梯度可简单理解为只是导数,或者说对于一个线
Jacobian矩阵1. Jacobian在向量分析中, 雅可比矩阵是一阶偏导数以一定方式排列成的矩阵, 其行列式称为雅可比行列式.雅可比矩阵雅可比矩阵的重要性在于它体现了一个可微方程与给出点的最优线性逼近. 因此, 雅可比矩阵类似于多元函数的导数.雅可比矩阵定义: 雅可比矩阵定义为向量对向量的微分矩阵假设\(F\): \({R_n} \to {R_m}\)是一个从欧式n维空间转换到欧式m维空间
转载
2023-09-08 08:59:02
137阅读
### 深度学习中的相似矩阵求解
在深度学习中,相似矩阵的求解是数据分析和特征提取的重要步骤。相似矩阵可以帮助理解数据点之间的关系,广泛应用于推荐系统、聚类分析和图像处理等领域。在这篇文章中,我们将通过一个实际的例子来演示如何求解相似矩阵,并提供相应的代码实现。
#### 实际问题
假设我们要分析一组图像数据,以便根据相似性构建一个推荐系统。每张图像可以用一个向量来表示,其维度依赖于特征提取
对于很多数学和工程问题,我们常常需要使用到梯度、散度和旋度公式,而有的时候,虽然在使用这些公式,却对他们其中的物理意义不甚清楚,这样的后果是只能对公式死记硬背,但结果还是常常忘记。这篇文章便从这三大公式的本质入手,推导它们在三大经典坐标系下的形式,授以“捕鱼”之道! 开始之前,我们先来回忆一下梯度公式的数学意义,它描述了函数在某点函数
单应矩阵原理 单应(透射变换)是射影几何中的概念,又称为射影变换。他把一个射影平面上的点映射到另一个平面对应的位置,并且把直线映射为直线,具有保线性质。与对极几何不同的是,对极几何将点映射到线上,而单应矩阵是点对点的关系。要注意的是单应矩阵的适用场景为:当场景中的特征点都落在同一平面上,比如墙、地面等,此时可用单应性估计运动。 单应(透射变换)可以看成是仿射变换的拓展。
应用机器学习算法时,我们通常采用梯度下降法来对采用的算法进行训练。其实,常用的梯度下降法还具体包含有三种不同的形式,它们也各自有着不同的优缺点。总结如下下面我们以线性回归算法来对三种梯度下降法进行比较。 一般线性回归函数的假设函数为:对应的能量函数(损失函数)形式为:下图为一个二维参数(θ0和θ1)组对应能量函数的可视化图: 一、批量梯度下降法 BGD批量梯度下降法(Batch Gra
原创
2023-03-23 09:13:28
85阅读