高斯混合模型--GMM(Gaussian Mixture Model)首先,我们先来了解一下,什么是高斯分布。若随机变量X服从一个数学期望为μ、方差为σ^2的正态分布,记为N(μ,σ^2)。其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。若随机变量
服从一个位置参数为
、尺度参数为
混合高斯模型(Mixture-of-Gaussian),从这个名字上来看,就是多个高斯分布混合着叠加来模拟我们的数据分布。事实上亦是如此。快看这一坨屎绿,恩,他就是一个单高斯模型。公式什么的都不写了吧,考研数学必考的。我们伟大的混合高斯模型就是由一坨坨不同的单高斯模型所构成的。如下妈妈说,只要模型的个数足够的多,这玩意是可以逼近任何概率分布的。恩,对模型有了大概的了解之后我们来看数学公式。(1)公
一、高斯混合模型概述1、公式高斯混合模型是指具有如下形式的概率分布模型:其中,αk≥0,且∑αk=1,是每一个高斯分布的权重。Ø(y|θk)是第k个高斯分布的概率密度,被称为第k个分模型,参数为θk=(μk, αk2),概率密度的表达式为:高斯混合模型就是K个高斯分布的线性组合,它假设所有的样本可以分为K类,每一类的样本服从一个高斯分布,那么高斯混合模型的学习过程就是去估计K个高斯分布的概率密度Ø
本文要证明为什么对高斯分布的方差的极大似然估计是有偏的。同时,也说明为什么求样本方差时,分母是N-1而不是N。首先,明白两点,(1)极大似然法得到的高斯方差是什么形式(2)什么是有偏。(1)先说第一个问题,用极大似然估计得到的高斯方差是什么。假设有n个符合高斯独立同分布的观测值,我们要根据这些样本值估计正态分布的期望和方差。以上信息可以表示为:(1)极大似然估计就要找需要合适的和使得(1)式具有最
一,介绍学习混合高斯,先要了解几个概念:1,协方差:协方差是对两个随机变量联合分布线性相关程度的一种度量。两个随机变量越线性相关,协方差越大,完全线性无关,协方差为零。根据数学期望的性质: &
转载
2023-12-21 10:54:59
299阅读
一、高斯模型简介 首先介绍一下单高斯模型(GSM)和高斯混合模型(GMM)的大概思想。1.单高斯模型如题,就是单个高斯分布模型or正态分布模型。想必大家都知道正态分布,这一分布反映了自然界普遍存在的有关变量的一种统计规律,例如身高,考试成绩等;而且有很好的数学性质,具有各阶导数,变量频数分布由μ、σ完全决定等等,在许多领域得到广泛应用。在这里简单介绍下高斯分布的概率密度分布函数:其中θ=(μ,σ2
基于二元混合高斯分布的实验与相关研究拓展Abstract本文将简要介绍混合高斯分布的严格定义,简单阐述混合高斯分布的特性与实际运用最后,本文将介绍混合高斯分布在机器学习领域的一大应用–EM算法,分析其性质与运用之间的关系Catalogue文章目录基于二元混合高斯分布的实验与相关研究拓展AbstractCatalogue@[toc]IntroductionPart 1 混合高斯分布模型介绍定义混合高
这一章开始,我们将进入到Guassian Mixture Model (GMM) 的学习。而为什么要学习GMM 呢?这是因为单峰分布已经不能准备的反映数据的分布了。正如下面的一个分布: 对于如上的数据分布来说,如果强行用单峰的Guassian Distribution 来表示这个分布,显然是可以的。但是,很明显是不合适的。会造成较大的误差,不能较好的表示整个数据的分布特征。1 模型介绍1.1 从几
转载
2023-12-15 11:47:19
268阅读
1.EM算法介绍E:Expection,期望步,利用估计的参数,来确定未知因变量的概率,并利用其来计算期望值。M:Maximization,最大化,使用最大似然法更新参数值,使E步中期望值出现的概率最大。例如网上较多的硬币例子,可以先估算硬币正反面参数A,但是无法获知隐变量B(无法知道某一次实验选择哪一枚硬币),因此可以分别计算每次试验选择了某一枚硬币的概率,也就是说计算了隐变量B的概率。明确了隐
转载
2023-10-15 22:13:49
98阅读
混合高斯 单一高斯模型无法应对如老忠实间歇喷泉这些实际的问题,而高斯混合模型提供了一类比单独的高斯分布更强大的概率模型。我们将高斯混合模型看成高斯分量的简单线性叠加,其公式为[注0]:\[p(\mathbf x) = \sum_{k=1}^{K} \pi_{k} \mathcal N(\mathbf x|\mu_k, \Sigma_k) \tag {9.7}
\]引入一个K维的二值随机变量\(\
转载
2023-08-26 18:39:49
159阅读
作为机器学习的十大算法之一,EM算法可谓是风头出尽,尤其是EM算法在聚类等方面的优越表现,让EM算法备受瞩目,这个星期对EM算法进行了一番了解,说实话EM算法光从教科书上的那些公式说导我觉得很难理解,在七月算法的一节关于EM算法的公开课上慢慢的对EM算法有了算是入门的了解,今天就来说说EM算法与其典型的应用:高斯混合分布 首先简略介绍一个高斯混合分布: 在一个随机分布里面,可能
GMM及EM算法标签(空格分隔): 机器学习前言:EM(Exception Maximizition) -- 期望最大化算法,用于含有隐变量的概率模型参数的极大似然估计;GMM(Gaussian Mixture Model) -- 高斯混合模型,是一种多个高斯分布混合在一起的模型,主要应用EM算法估计其参数;本篇博客首先从简单的k-means算法给出EM算法的迭代形式,然后用GMM的求解过程给出E
转载
2024-01-02 20:27:41
0阅读
单元高斯分布(The univariate Gaussian),我们高中时就知道了,其表达式如下:而多元高斯分布(Multivariate Gaussian Distribution)就是有多个参数控制的高斯分布,其均值是一个均值向量μ,设均值向量维度为D,而方差则是方差矩阵Σ,因此其表达式如下:书中P84,P111对于单个的高斯分布对数据建模的缺点作了描述。由于单个高斯模型是一个unimodal
转载
2023-10-01 18:27:36
191阅读
同朴素贝叶斯一样,高斯判别分析(Gaussian discriminant analysismodel, GDA)也是一种生成学习算法,在该模型中,我们假设y给定的情况下,x服从混合正态分布。通过训练确定参数,新样本通过已建立的模型计算出隶属不同类的概率,选取概率最大为样本所属的类。 一、混合正态分布(multivariate normal distribution)混合正态分布也称混合高斯分
混合高斯模型及其计算方法高斯分布一维高斯分布多维高斯分布混合高斯模型(GMM)混合高斯模型概率分布参数估计EM算法求解参数参考文献 高斯分布 高斯分布(Gaussian Distribution)又称正态分布(Normal Distribution),因其具有良好的数学和计算性质,被广泛应用于各个领域。 根据棣莫弗中心极限定理,一组具有有限均值方差的独立同分布的随机变量之和,近似服从正
转载
2023-11-23 16:41:38
83阅读
高斯模型加载install.packages('mlegp') # 安装包library(mlegp) # 加载包data=read.csv('training.csv') #训练集数据读取str(data) #查看训练集数据testdata=read.csv('test.csv') # 验证集数据读取str(testdata) #查看验证集数据x<-data[1:8] #训...
原创
2021-06-09 23:14:15
1066阅读
123
原创
2022-01-09 10:57:22
557阅读
卷积和高斯卷积图片的类型二值化图灰度图彩色图为什么使用卷积?卷积的定义卷积的计算边缘填充边缘填充的作用边缘填充的方式几种特殊的卷积核带来的效果高斯振铃现象如何解决振铃现象--高斯内核(模板)高斯函数的定义高斯模板的性质噪声高斯噪声椒盐噪声高斯滤波&中值滤波总结 卷积图片的类型二值化图 (Binary)灰度图 (Gray Scale)彩色图(Color)二值化图二值化图每一个像素值不是1就
转载
2024-01-29 10:05:26
105阅读
本文主要推导高斯分布(正态分布)的积分,期望E(X)和方差V(X)。其中主要是方差V(X)的推导,本文介绍3种高斯方差的推导方法。高斯分布的概率密度函数:高斯分布的概率分布函数(归一化):概率密度函数的积分为,如下开始证明。这里直接计算比较困难,但可以利用双重积分转极坐标计算体积的方式计算,如下令 , , 坐标系转换到极坐标系就行积分即可证明得:注:这里可以由 看出,为一个2维正态分布,其在
高斯混合模型,通常简称GMM,是一种广泛使用的聚类算法,它并不能直接返回该数据点属于哪一簇。GMM使用了高斯分布作为模型参数,用模型去逼近数据点分布,在实际计算过程中使用的是期望最大算法(EM, Expection Maximum)进行训练。高斯分布,通常也叫正态分布,是自然界中最常见的分布形式。对于任一高斯分布函数,都有两个参数μ和σ,其中μ为该组数据的均值,σ为该组数据的标准差,下式是高斯分布