无论在机器学习还是深度领域中,损失函数都是一个非常重要的知识点。损失函数(Loss Function)是用来估量模型的预测值 f(x) 与真实值 y 的不一致程度。我们的目标就是最小化损失函数,让 f(x) 与 y 尽量接近。通常可以使用梯度下降算法寻找函数最小值。回归模型中的三种损失函数包括:均方误差(Mean Square Error)、平均绝对误差(Mean Absolute Error,M
SKlearn·数据集: https://scikit-learn.org/stable/modules/classes.html#module-sklearn.datasetssklearn有自带的一些数据集,在如上地址,通过如下方式导入: from 完成训练模型的步骤如下: from sklearn import datasets# sklearn自带数据集
from sk
目录nn.Module(模组)torch.optim (优化)模型的保存和加载一维线性回归代码如下:均方差损失函数nn.MSELoss()model.parameters()的理解与使用torch.autograd.Variableoptimizer.zero_grad()model.eval的作用深度学习方法——pytorch下GPU与CPU调用的切换看一下各个变量 nn.Module(模组)
损失函数大致分为两类:回归(Regression)和分类(Classification)。回归模型中的三种损失函数包括:均方误差(Mean Square Error, MSE)平均绝对误差(Mean Absolute Error, MAE)Huber Loss均方误差(Mean Square Error, MSE)指模型预测值与样本真实值之间距离平方的平均值:其中yi和分别表示第个样本的真实值和预
目录1.数据准备2.设计模型3.构造损失函数和优化器4.训练周期(前馈—>反馈—>更新)5. 代码实现课程推荐:05.用PyTorch实现线性回归_哔哩哔哩_bilibili线性通常是指变量之间保持等比例的关系,从图形上来看,变量之间的形状为直线,斜率是常数。当要预测的变量 y 输出集合是无限且连续,我们称之为回归。比如,天气预报预测明天是否下雨,是一个二分类问题;预测明天的降雨量多少
转载
2023-10-08 11:54:59
167阅读
# PyTorch中的回归损失函数选择
在深度学习中,**损失函数**是衡量模型预测与实际结果之间差异的关键指标。在回归任务中,选择适当的损失函数对于模型的训练效果至关重要。本文将探讨在PyTorch中常用的回归损失函数,并提供代码示例,帮助大家更好地理解如何在实际中使用它们。
## 常用的回归损失函数
### 1. 均方误差(Mean Squared Error, MSE)
均方误差是最
1 线性回归 线性回归是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,运用十分广泛。其表达形式为y = w’x+e,e为误差服从均值为0的正态分布。1.1 线性模型 首先
转载
2023-10-18 10:20:57
92阅读
作者:Prince Grover编译:ronghuaiyang 导读 为模型选择合适的损失函数,让模型具有最好的效果。机器学习中的所有算法都依赖于函数的最小化或最大化,我们称之为“目标函数”。一组最小化的函数称为“损失函数”。损失函数是衡量预测模型在预测预期结果方面做得有多好。求函数最小值的一种常用方法是“梯度下降法”。把损失函数想象成起伏的山,而梯度下降就像从山上滑下来到达最低点。没有一个单
YOLOV1提出论文:You Only Look Once: Unified, Real-Time Object Detection1、物体检测经典方法two-stage(两阶段):Faster-rcnn Mask-Rcnn系列one-stage(单阶段):YOLO系列 最核心的优势:速度非常快,适合做实时检测任务!但是缺点也是有的,效果通常情况下不会太好!2、机器学习分类任务评价指标3、YO
学习人工智能快半年了,从ML到DL,又忘了前面的知识,于是在此总结一下在机器学习中常用的损失函数和导函数,以便以后复习。文中内容仅为笔者总结,仅供大家参考,其中若有错误请大家批评指正。在机器学习问题中,主要可分为回归和分类两大问题。一、回归问题回归问题主要关注的是一个唯一的因变量(需要预测的值)和一个或多个数值型的自变量(预测变量)之间的关系
代价函数 梯度下降 正则化线性回归 模型 y=f(x)=w⋅x+b y=f(x)=0.3345⋅x+121.271、模型度量函数损失函数(Loss Function)度量单样本预测的错误程度,损失函数值越小,模型就越好。常用的损失函数包括:0-1损失函数、平方损失函数、绝对损失函数、对数损失函数等代价函数(Cost Function)度量全部样本集的平均误差。常用的代价函数包括均方误差、均方根误差
机器学习的所有算法都需要最大化或者最小化目标函数,在最小化场景下,目标函数又称损失函数。实际应用中,选取损失函数需要从多个角度考虑,如是否有异常值、算法、求导难度、预测值的置信度等等。损失函数可分为两大类,分类问题的损失函数和回归问题的损失函数, 本文将对比分析回归问题中最常用的5个损失函数。1、均方误差(又称MSE、L2损失) 回归问题中最常见的损失函数。如果对所有样本点只给出一个预测值,那么这
码字不易,欢迎点个赞,谢谢!引言 对于二分类问题逻辑回归是经常被采用的方法,逻辑回归算法就是在样本数据中寻找一个超平面,然后可以把样本数据准确的分隔成不同的类别,并且能够对相应的新数据特征进行分类。 比如上图所示的两类数据样本,怎么寻找一个超平面(直线)分割开红色、蓝色样本?如果新给出一个样本的特征如何预测该样本属于哪个类别?提出逻辑回归算法的假设函数 回顾线性回归中的假
理解损失的优缺点,才能更好地结合任务组合不同的损失函数。导言在机器学习中,损失函数是代价函数的一部分,而代价函数是目标函数的一种类型[1]。Loss function损失函数:用于定义单个训练样本与真实值之间的误差。Cost function代价函数:用于定义单个批次/整个训练集样本与真实值之间的误差。Objective function目标函数:泛指任意可以被优化的函数。损失函数是用于衡量模型所
机器学习分为有监督学习,无监督学习,半监督学习,强化学习。对于逻辑回归来说,就是一种典型的有监督学习。 既然是有监督学习,训练集自然可以用如下方式表述: 对于这m个训练样本,每个样本本身有n维特征。再加上一个偏置项x0, 则每个样本包含n+1维特征: 其中 x∈Rn+1, x0=1, y∈{0,1} 李航博士在统计学习方法一书中给分类问题做了如下定义: 分类是监
文章目录Regression lossMean Square Error, Quadratic loss, L2 LossMean Absolute Error, L1 LossMSE and MAEHuber Loss, Smooth Mean Absolute ErrorLog-Cosh Loss and Quantile LossClassification lossBinomial De
回归损失函数:L1,L2,Huber,Log-Cosh,Quantile Loss机器学习中所有的算法都需要最大化或最小化一个函数,这个函数被称为“目标函数”。其中,我们一般把最小化的一类函数,称为“损失函数”。它能根据预测结果,衡量出模型预测能力的好坏。在实际应用中,选取损失函数会受到诸多因素的制约,比如是否有异常值、机器学习算法的选择、梯度下降的时间复杂度、求导的难易程度以及预测值的置信度等等
线性回归和逻辑回归损失函数推导@(数据挖掘) 线性回归和逻辑回归损失函数推导一、线性回归最小二乘loss推导二、logistics回归加sigmoid原因以及交叉熵损失函数推导 一、线性回归最小二乘loss推导我们都知道线性回归是机器学习中最简单,使用范围也很广的一个算法,经典且使用。而它的损失函数最小二乘损失,大家也很熟悉,但是为什么要用最小二乘loss呢?正文开始:&nbs
在上一篇文章介绍了逻辑回归的模型,并详细讲了其推导过程。为了加深印象,在这篇文章中从对数几率的角度再次探索逻辑回归的推导过程,看看逻辑回归为什么要使用sigmoid函数作为假设。逻辑回归损失函数的推导,也是面试时经常被问到的一个点,我们也从两个角度去学习其损失函数的推导过程。然后再计算损失函数的导数。1.从对数几率看逻辑回归1.1 推导过程一句话总结逻辑回归:逻辑回归假设数据服从伯努利分布,通过极
学习过程知识粗略记录,用于个人理解和日后查看 包导入 import torch from torch import nn MSELoss-均方差损失 常用于回归问题中 对于每一个输入实例都只有一个输出值,把所有输入实例的预测值和真实值见的误差求平方,然后取平均 定义:class torch.nn.M ...
转载
2021-08-19 15:52:00
372阅读
2评论