目录简介决策树概念定义如何构建?优点缺点集成学习特点错误率 种类自主采样法(Boostrap Sampling)概念 拓展随机森林概念优点缺点 简介一种分类算法,属于集成学习中的Bagging算法,即引导聚合类算法,由于不专注于解决困难样本,所以模型的performance会受到限制。在介绍随机森林算法之前,首先要弄懂三个概念:决策树集成学习(Ensemble Lea
我是谁?梦幻 1 概述集成算法:考虑多个评估器的建模结果,汇总之后得到一个综合的结果,以此来获取比单个模型更好的回归或分类表现。有三类集成算法:装袋法(Bagging),提升法(Boosting)和stacking装袋法的核心思想是构建多个相互独立的评估器,然后对其预测进行平均或多数表决原则来决定集成评估器的结果,装袋法的代表模型就是随机森林;提升法中,基评估器是相关的,是按顺序一一构
前言提到森林,就不得不联想到树,因为正是一棵棵的树构成了庞大的森林,而在本篇文章中的”树“,指的就是Decision Tree-----决策树。随机森林就是一棵棵决策树的组合,也就是说随机森林=boosting+决策树,这样就好理解多了吧,再来说说GBDT,GBDT全称是Gradient Boosting Decision Tree,就是梯度提升决策树,与随机森林的思想很像,但是比随机森林稍稍的难
拥有高方差使得决策树(secision tress)在处理特定训练数据集时其结果显得相对脆弱。bagging(bootstrap aggregating 的缩写)算法从训练数据的样本中建立复合模型,可以有效降低决策树的方差,但树与树之间有高度关联(并不是理想的树的状态)。随机森林算法(Random forest algorithm)是对 bagging 算法的扩展。除了仍然根据从训练数据样本建立复
转载
2023-10-05 09:46:05
135阅读
源码分享及数据集分享:https://github.com/luo948521848/BigDatas在机器学习中,随机森林是一个包含多个决策树的分类器, 并且其输出的类
原创
2023-03-08 10:43:26
471阅读
1 什么是随机森林?作为新兴起的、高度灵活的一种机器学习算法,随机森林(Random Forest,简称RF)拥有广泛的应用前景,从市场营销到医疗保健保险,既可以用来做市场营销模拟的建模,统计客户来源,保留和流失,也可用来预测疾病的风险和病患者的易感性。最初,我是在参加校外竞赛时接触到随机森林算法的。最近几年的国内外大赛,包括2013年百度校园电影推荐系统大赛、2014年阿里巴巴天池大数据竞赛以及
# 随机森林规则提取代码实现
## 1. 流程概述
下面是实现随机森林规则提取的流程概述:
| 步骤 | 描述 |
| ---- | ---- |
| 步骤1 | 导入所需的库和数据 |
| 步骤2 | 创建随机森林模型 |
| 步骤3 | 训练随机森林模型 |
| 步骤4 | 提取规则 |
下面将逐一介绍每个步骤需要做什么,并提供相应的代码。
## 2. 步骤1:导入所需的库和数据
原创
2023-11-09 06:04:52
72阅读
随机森林和提升作者:樱花猪 摘要:本文为七月算法(julyedu.com)12月机器学习第十一次次课在线笔记。随机森林和提升都是机器学习将弱分类器融合成强分类器的方法。和我们熟悉的另一种机器学习模型SVM相比,这种方法更适合于大数据并且它的计算速度要比SVM快许多。 引言Boosting这些比较受广大研究者的热爱,而曾经红得半边天的SVM不再那么主流。仔细一看,实际上随机森林我
1.随机森林 随机森林就是通过集成学习的思想将多棵树集成的一种算法,它的基本单元是决策树,而它的本质属于机器学习的一大分支——集成学习(Ensemble Learning)方法 每棵决策树都是一个分类器(假设现在针对的是分类问题),那么对于一个输入样本,N棵树会有N个分类结果。而随机森林集成
目录1. 基本原理2. 特征选择2.1 袋外错误率(oob error)2.2 特征重要性2.3 特征选择3. 优缺点优点缺点1. 基本原理随机森林(Random Forest,RF)是bagging算法的扩展变体,顾名思义,森林就是由多个决策树构成的算法,其基学习器为CART决策树。之所以称为随机是因为:训练样本选取随机,即每一个样本的选取都是有放回的随机选取。这样,每一颗树的训练样本几乎都不相
1.什么是随机森林顾名思义,是用随机的方式建立一个森林,森林里面有很多的决策树组成,随机森林的每一棵决 策树之间是没有关联的。在得到森林之后,当有一个新的输入样本进入的时候,就让森林中的每一棵决策树分别进行一下判断,看看这个样本应该属于哪一类(对于分类算法),然后看看哪一 类被选择最多,就预测这个样本为那一类。 我们可以这样比喻随机森林算法:每一棵决策树就是一个精通于某一个窄领域的专家(因为我们
1 随机森林bagging的好处是降低各个子分类器的variance,而决策树又是对数据敏感的算法,variance比较大。因此我们很自然地就把bagging用到了决策树。也就是基本的随机森林算法:随机森林的好处是:(1)每棵树并行化学习,非常有效率(2)继承了CART的好处(3)弥补了决策树variance大的缺点。 扩展的随机森林(这部分没怎么听懂): 2 OOB错误在做b
Random Forest是加州大学伯克利分校的Breiman Leo和Adele Cutler于2001年发表的论文中提到的新的机器学习算法,可以用来做分类,聚类,回归,和生存分析,这里只简单介绍该算法在分类上的应用。随机森林就是多个CARD树。 Random Forest(随机森林)算法是通过训练多个决策树,生成模型,然后综合利用多个决策树进行分类。 随机森林算法只需要
转载
2023-05-29 15:41:11
152阅读
一般情况下,数据集的特征成百上千,因此有必要从中选取对结果影响较大的特征来进行进一步建模,相关的方法有:主成分分析、lasso等,这里我们介绍的是通过随机森林来进行筛选。用随机森林进行特征重要性评估的思想比较简单,主要是看每个特征在随机森林中的每棵树上做了多大的贡献,然后取平均值,最后比较不同特征之间的贡献大小。贡献度的衡量指标包括:基尼指数(gini)、袋外数据(OOB)错误率作为评价指标来衡量
转载
2023-07-15 23:38:08
424阅读
什么是随机森林?随机森林就是通过集成学习的思想将多棵树集成的一种算法,它的基本单元是决策树,而它的本质属于机器学习的一大分支——集成学习(Ensemble Learning)方法。随机森林的名称中有两个关键词,一个是“随机”,一个就是“森林”。“森林”我们很好理解,一棵叫做树,那么成百上千棵就可以叫做森林了,这样的比喻还是很贴切的,其实这也是随机森林的主要思想--集成思想的体现。 随机森
随机森林(Random Forest,RF) 1、定义随机森林指的是利用多棵树对样本进行训练并预测的一种分类器随机森林顾名思义,是用随机的方式建立一个森林,森林里面有很多的决策树组成,随机森林的每一棵决策树之间是没有关联的。在得到森林之后,当有一个新的输入样本进入的时候,就让森林中的每一棵决策树分别进行一下判断,看看这个样本应该属于哪一类(对于分类算法),然后看看哪一类被选择最多,就预测
sklearn随机森林本文基于菜菜的sklearn教学@目录sklearn随机森林随机森林分类器概述引入包导入数据划分测试集和训练集核心代码特征重要性预测交叉验证参数讲解随机森林回归案例分析基础代码调参结语随机森林分类器概述随机森林是一种集成算法,即运用大量不同的算法,选出最优的一个,主要是基于决策树。引入包from sklearn.tree import DecisionTreeClassifi
转载
2023-08-13 22:28:07
129阅读
在机器学习中,随机森林由许多的决策树组成,因为这些决策树的形成采用了随机的方法,因此也叫做随机决策树。随机森林中的树之间是没有关联的。当测试数据进入随机森林时,其实就是让每一颗决策树进行分类,最后取所有决策树中分类结果最多的那类为最终的结果。因此随机森林是一个包含多个决策树的分类器,并且其输出的类别是由个别树输出的类别的众数而定。随机森林可以既可以处理属性为离散值的量,如ID3算法,也可以处理属
定义随机森林指的是利用多棵树对样本进行训练并预测的一种分类器。该分类器最早由Leo Breiman和Adele Cutler提出,并被注册成了商标。在机器学习中,随机森林是一个包含多个决策树的分类器,并且其输出的类别是由个别树输出的类别的众数而定。Leo Breiman和Adele Cutler发展出推论出随机森林的算法。 随机森林是一种灵活且易于使用的机器学习算法,即便没有超参数调优,
Bootstraping抽样☞ 一种有放回的抽样方法Bootstraping的名称来自于成语"pull up your own bootstraps",意为依靠你自己的资源(自助法).bootstrap指靴子后边向上拉的小环,带子."通过拉靴子让自己上升”,意思是“不可能发生的事情”。后来意思发生了转变,隐喻“不需要外界帮助,仅依靠自身力量让自己变得更好” 。Bagging 策略bootstrap