关联规则算法数据挖掘报告_51CTO博客
上篇博客讲述了Apriori算法的思想和java实现, Apriori算法是经典的关联规则算法,但是如上篇博客所述,它也有两个致命的性能瓶颈,一个是频繁集自连接产生候选集这一步骤中可能产生大量的候选集;另一个是从候选集得到频繁项集需要重复扫描数据库。2000年,Han等提出了一个称为FP-tree的算法,有效解决了以上两个问题,它只需要扫描数据库2次,并不使用候选集,通过构造一棵频繁模式树(Pat
3.2 关联规则分析关联规则分析又称关联挖掘,就是在交易数据、关系数据或其他信息载体中,查找存在于项目集合或对象集合之间的频繁模式、关联、相关性或因果结构。或者说,关联分析是发现交易数据库中不同商品(项)之间的联系。比较常用的算法是Apriori算法和FPgrowth算法关联可分为简单关联、时序关联、因果关联关联规则分析的目的是找出数据库中隐藏的关联,并以规则的形式表达出来,这就是关联规则,其
  关联规则数据挖掘技术的一个活跃的研究方向之一,其反映出项目集之间有意义的关联关系。关联规则可以广泛地应用于各个领域,既可以检验行业内长期形成的知识模式,也能够发现隐藏的新规律。有效地发现、理解和运用关联规则数据挖掘任务的一个重要手段。        在处理大量数据时,很重要的一点是要理解不同实体间相互关联的规律。通常,发现这些规律是个极为
1.数据挖掘关联分析 数据挖掘是一个比较庞大的领域,它包括数据预处理(清洗去噪)、数据仓库、分类聚类、关联分析等。关联分析可以算是数据挖掘最贴近我们生活的一部分了,打开卓越亚马逊,当挑选一本《Android4高级编程》时,它会不失时机的列出你可能还会感兴趣的书籍,比如Android游戏开发、Cocos2d-x引擎等,让你的购物车又丰富了些,而钱包又空了些。 关联分析,即从一个数据集中发现项之间
以超市销售数据为例子,提取关联规则的最大困难在于当存在很多商品时,可能的商品的组合的数目会达到一种令人望而却步的程度。因而各种关联规则分析的算法从不同方面入手,以减少可能的搜索空间的大小以及减少扫描数据的次数。Apriori算法时经典的挖掘频繁项集的算法,第一次实现了再大数据集上可行的关联规则提取,其核心思想是通过连接产生候选项与其支持度,然后通过剪枝生成频繁项集。1.关联规则的一般方式项集A,B
<div id="article_content" class="article_content clearfix csdn-tracking-statistics" data-pid="blog" data-mod="popu_307" data-dsm="post"> <link rel="stylesheet" href="">
转载 2023-10-07 08:16:35
170阅读
文章目录1 理论知识1.1 支持度、置信度、提升度1.2 Apriori算法1.3 FP-Growth算法2 导包3 数据预处理4 挖掘关联规则Apriori算法FP-Growth算法 1 理论知识1.1 支持度、置信度、提升度Support(支持度):表示某个项集出现的频率,也就是包含该项集的交易数与总交易数的比例。例如P(A)表示项集A的比例,表示项集A和项集B同时出现的比例。Confide
挫折感很大、觉得很难熬的时候,可以闭上眼睛,想像自己已经是十年之后的自己,置身一段距离之外,转头去看正在遭遇的那些事。 练习这样做,心情可能会平静些,知道眼前这一切,都会过去。——蔡康永 别太嚣张,对自己没好处。——李秘书 你今天泼给我的冷水,我定要烧开了给你泼回去。——宋晓峰 小人别得地,得地就起屁。 ——刘能目录 目录关联规则概述关联算法的介绍2-1 Apriori算法2-2 FP-
定义:给定事务集合T,找出   支持度≥支持度阈值(minsup)   并且   置信度≥置信度阈值(minconf)的所有规则。产生频繁项集:找出支持度≥支持度阈值的行为。产生关联规则:在上一步产生的频繁项集中提取高置信度的规则(也称:强规则)。如果不懂什么是支持度和置信度的话可以百度一下。关联规则挖掘问题的具体流程图如图1所示。图1 关联规则挖掘流程图代码片1:关
数据挖掘实验报告实验一:Apriori算法实现一、Apriori算法简介 Apriori算法是经典的挖掘频繁项集和关联规则数据挖掘算法。A priori在拉丁语中指"来自以前"。当定义问题时,通常会使用先验知识或者假设,这被称作"一个先验"(a priori)。Apriori算法的名字正是基于这样的事实:算法使用频繁项集性质的先验性质,即频繁项集的所有非空子集也一定是频繁的。Apriori算法使
目录一、算法定义二、经典例子三、定义阐述1、项集(Itemset)2、事务T与事务集D3、支持度计数(Support count)4、支持度(Support)5、频繁项集(Frequent Itemset)6、关联规则7、置信度(Confidence)8、关联规则挖掘问题四、挖掘关联规则(Mining Association Rules)1、频繁项集产生(Frequent Itemset Gene
目录一、序言二、构造FpTree Step 1:扫描数据记录,生成一级频繁项集,并按出现次数由多到少排序,如下所示: Step 2:再次扫描数据记录,对每条记录中出现在Step 1产生的表中的项,按表中的顺序排序。初始时,新建一个根结点,标记为null; (1)第一步构造(2)第二步构造 (3)第三步构造(4)最终 三、利用FpTree挖掘频繁项集
1、关联规则挖掘算法关联规则挖掘算法可以实现从两种经典算法Apriori或FP-Growth中任意选取算法,输出各个频繁项集和强关联规则。输入文件由本地导入,可自行设置最小支持度计数和最小置信度参数值。2、 Apriori算法设计思想Apriori算法本质上使用一种称作逐层搜索的迭代方法,使用候选项集找频繁项集,其特点在于每找一次频繁项集就需要扫描一次数据库。3、FP-growth算法设计思想FP
转载 2023-06-26 10:33:51
349阅读
关联规则挖掘是大数据分析与挖掘的基础,通过在大量数据挖掘数据项之间的强关联关系,可以得到很多有趣而且有价值的信息。01、基本概念1、关联规则挖掘是在大量数据的基础上,通过分析哪些数据项频繁地一起出现,可以得到很多频繁一起出现的数据项集合。2、根据频繁项集的元素个数X,将频繁项集称为频繁k-项集。3、项集X的支持度计数4、设计集合中事务的总数为N,则项集的支持度定义为5、最小支持度(minsup
今天为大家介绍数据挖掘的常用方法。首先,想问大家一个问题,什么是数据挖掘呢? 1.从技术角度看,数据挖掘(Data Mining,简称DM)是从大量的、不完全的、有噪声的、模糊的、随机的实际数据中,提取隐含在其中的、人们所不知道的、但又是潜在有用的信息和知识的过程。2.从商业应用角度看,数据挖掘是一种崭新的商业信息处理技术,其主要特点是对商业数据库中的大量业务数据进行抽取
文章目录一、 问题背景与意义:二、 问题定义三、 经典的关联规则挖掘算法3.1 层次算法3.1.1 Apriori算法描述3.1.2 FP-Growth算法3.2 图挖掘算法3.3 并行算法3.4 数据算法3.5 序列算法四、 关联规则的应用五、 总结与展望六、 参考文献 一、 问题背景与意义:数据挖掘作为一种从数据中获取信息的有效方法,越来越受到人们的重视。其中,关联规则挖掘首先被用来发现购
数据化审计:问题导向、应用至上、解决痛点内容摘要 交易者账户和其控制的“影子账户”往往在时、空上有一定频率的交集。从交易数据中,找到这些频繁出现的交易集合,也就能找到相应的“影子账户”。数据挖掘中的关联规则挖掘就是这样一种挖掘频繁集的算法,可以让“影子账户”无所遁形。好久不发技术贴,晚上被问到,就整理了下发出来。代码很粗糙,专业人士请忽略!重要声明本文中的所有信息和数据都是虚拟的,仅为说明数据
一、关联规则简述关联规则是一种在大型数据库中发现事物之间相关性的方法,这里的事物有产品、 事件,比如什么商品会被一起购买。当某件事发生时,其他事件也会发生,这种联系称为关联。所谓关联分析,就是指如果两个事物或者多个事物之间存在-定的关联,那么其中一个事物就能通过其他事物进行预测,它的目的是为了挖掘隐藏在数据间的规律和相关关系,根据 挖掘结果,设计促销组合方案,实现销量的提升。比较常见的场景就是“购
目录1 关联规则挖掘概念2 关联规则基本模型2.1 基本概念2.2 关联规则挖掘步骤3 Apriori算法3.1 介绍 3.2 实现步骤3.3 伪代码1 关联规则挖掘概念一、定义关联规则反映一个事物与其它事物之间的依赖和相互关联性。经典例子为购物篮分析,通过分析购物篮数据来分析顾客经常同时购买哪些商品(购买习惯)。这是BI(Business Intelligence)的一项应用。二、目
一、 关联规则、二、 数据项支持度、三、 关联规则支持度、
  • 1
  • 2
  • 3
  • 4
  • 5