hive mr整体过程_51CTO博客
 目录一、 Hive Common Join二、 Hive Map Join笼统的说,Hive中的Join可分为Common Join(Reduce阶段完成join)和Map Join(Map阶段完成join)。本文简单介绍一下两种join的原理和机制。一、 Hive Common Join如果不指定MapJoin或者不符合MapJoin的条件,那么Hive解析器会将Join操作转换成C
-- hive的库、表等数据操作实际是hdfs系统中的目录和文件,让开发者可以通过sql语句, 像操作关系数据库一样操作文件内容。一、hiveSQL转化为MR过程        一直好奇hiveSQL转化为MR过程,好奇hive是如何做到这些的,所以在网上找了几篇相关博客,根据自己理解重新画了一份执行过程图,做笔记。   二、h
转载 2023-07-12 09:30:10
149阅读
基于hive引擎的计算优化本篇文章主要介绍hive引擎的计算优化,可能也是一篇实打实的对大家实际工作带来帮助的文章,全文主要包含三个部分:hive底层、hive参数调优、常见问题解决一、hive底层 - MapReduce1.MR进程一般一个完成的MR程序在运行时有三个进程,分别如下: (1)MR Appmaster:负责整个调度和过程协调 (2)MapTask:负责Map阶段的整个数据处理流程
转载 2023-11-24 21:07:57
345阅读
HQL是如何转换为MR任务的一、Hive的核心组成介绍二、HQL转换为MR任务流程说明三、HQL的读取与参数解析3.1 程序入口 — CliDriver3.2 找到“CliDriver”这个类的“main”方法3.3 主类的run方法3.4 executeDriver方法3.5 processLine方法3.6 processCmd方法3.7 processLocalCmd方法3.8 qp.ru
转载 2023-10-05 19:57:20
124阅读
背景:熟悉MR执行的步骤后,可以往3个点继续分析:1. code:MR的执行code,根据执行的步骤产出流程图。2.引擎:了解TEZ/SPARK sql执行的步骤,产出如MR一样的流程图,清楚MR,TEZ,SPARK SQL的区分3.sql编译过程:熟悉hsql提交到执行计划,到MR执行的过程,输出文档。 目前从第三点入手,主要还是跟工作息息相关。美团文章:https://tech.me
Hive是基于Hadoop平台的,它提供了类似SQL一样的查询语言HQL。有了Hive,如果使用过SQL语言,并且不理解Hadoop MapReduce运行原理,也就无法通过编程来实现MR,但是你仍然可以很容易地编写出特定查询分析的HQL语句,通过使用类似SQL的语法,将HQL查询语句提交Hive系统执行查询分析,最终Hive会帮你转换成底层Hadoop能够理解的MR Job。对于最基本的HQL查
Hive是基于Hadoop平台的,它提供了类似SQL一样的查询语言HQL。有了Hive,如果使用过SQL语言,并且不理解Hadoop MapReduce运行原理,也就无法通过编程来实现MR,但是你仍然可以很容易地编写出特定查询分析的HQL语句,通过使用类似SQL的语法,将HQL查询语句提交Hive系统执行查询分析,最终Hive会帮你转换成底层Hadoop能够理解的MR Job。 对于最基本的HQL
Hive架构流程(十分重要,结合图进行记忆理解)当客户端提交请求,它先提交到Driver,Driver拿到这个请求后,先把表明,字段名拿出来,去数据库进行元数据验证,也就是Metasore,如果有,返回有,Driver再返回给Complier编译器,进行HQL解析到MR任务的转化过程,执行完之后提交回给Driver一个MR任务,然后提交到Hadoop集群,交给YRAN进行接收请求并处理,产生结果,
1.Hive简述  1.1 Hive是什么    Hive是数据仓库.它是构建在Hadoop之上的,通过解析QL(Hive SQL),转换成MR任务(Tez,Spark......)去提交执行.    RDBMS一般是写验证,而Hive是读验证,即数据进入不会验证数据是否符合要求,只在读取的时候检查,解析具体字段  1.2 Hive的优缺点    优点:      可以直接访问HDFS,或者其它的
转载 2023-11-13 12:42:49
93阅读
Fetch抓取 hive中的某些查询不必使用MR,例如select * from,在这种情况下,hive可以简单的读取表的存储目录下的文件,然后输出查询结果到控制台。 hive.fetch.task.conversion设置成mre,如下查询方式都不会执行MR程序 hive (default)> set hive.fetch.task.conversion=more; hive (defau
一,调优基础 :1 ,连接暗示 :需求 : 让 join 发生在 map 端sql :select /*+ mapjoin(customers) */ a.*,b.* from customers a left outer join orders b on a.id=b.cid;2 ,hive 执行计划hql 在执行的时候,是转化成了什么样的 mr 去执行的。3 ,查看执行计划 : expla
转载 2023-09-05 15:24:40
89阅读
Pig是一种编程语言,它简化了Hadoop常见的工作任务。Pig可加载数据、表达转换数据以及存储最终结果。Pig内置的操作使得半结构化数据变得有意义(如日志文件)。同时Pig可扩展使用Java中添加的自定义数据类型并支持数据转换。 Hive在Hadoop中扮演数据仓库的角色。Hive添加数据的结构在HDFS(hive superimposes structure on data in HDFS)
转载 2023-09-12 03:47:08
89阅读
# Hive SQL转化为MR过程 ## 1. 简介 Hive是基于Hadoop的数据仓库工具,它提供了类似于SQL的查询语言,称为HiveQL。HiveQL允许用户以SQL风格的方式查询和分析存储在Hadoop集群上的大规模数据。然而,HiveQL查询被转化为MapReduce作业以在Hadoop集群上执行。本文将介绍Hive SQL转化为MR过程,并提供相关代码示例。 ## 2. H
原创 2023-09-19 09:23:02
425阅读
我们知道,Hive默认使用的计算引擎是MR,但有没有想过我们写的HQL语句是如何转换为MR程序的?所以博主总结了一些简单HQL语句转换为MR的基本原理【1】常用SQL转换操作 Join的实现原理 对于SQL来说,join操作可以说是最常用的操作了,那么是如何转换为MR程序的呢?SQL语句如下?select u.name, o.orderid from order o join user u on
转载 2023-07-14 13:10:26
187阅读
# Hive MapReduce 在大数据领域中,Hive是一个非常强大的数据仓库基础设施,它能够提供类似于SQL的查询语言来处理海量数据。而Hive MapReduce(简称Hive MR)是Hive的核心组件之一,它使用了MapReduce框架来实现Hive的查询功能。 ## 什么是MapReduce? MapReduce是一种用于处理和生成大规模数据集的一种编程模型和算法。它分为两个阶
原创 2023-12-05 16:26:13
28阅读
最近在研究Impala,还是先回顾下Hive的SQL执行流程吧。Hive有三种用户接口:cli (Command line interface)bin/hive或bin/hive –service cli命令行方式(默认)hive-server/hive-server2bin/hive –service hiveserver 或bin/hive –service hiveserver2通过JDBC
转载 2023-06-05 10:20:02
146阅读
  hive就是一个将sql语句转化为MR工具hive的工作原理:1、使用antlr定义sql语法,(详细见hive.g),由antlr工具将hive.g编译为两个java文件:HiveLexer.java    HiveParser.java,可以将输入的sql解析为ast树2、org.apache.hadoop.hive.ql.Driver对ast树进行
一、Hive的概念介绍(相当于Hadoop的客户端)        1> Hive处理的数据存储在HDFS中        2>Hive分析数据的底层是MR(在安装完Hive的时候它底层已经完成了对应SQL语句和MR编程的对应关系的模板的写入,将所有MR模板封装在Hive中),而当客户端输入的SQL语句时,
转载 2023-11-20 07:57:59
58阅读
什么是spark? 基于内存一站式快速的计算框架 spark下面有哪些产品? spark core --> spark rdd , spark核心编程,MapReduce spark sql --> hive spark streaming --> storm , 流式实时计算 spark mllib --> 机器学习,
转载 2023-12-18 20:38:28
17阅读
[size=medium]hive就是一个将hiveql(其实是sql的子集或者说一点点的超集)语句转化为一系列可以在Hadoop集群上运行的MR的工具,通常在客户端执行 hive 命令(淘宝有ide,所以不用安装hive啦 :wink: )然后输入 SQL 语句后, hive 将 SQL 语句生成多个 MR 的 job ,然后将这些 job 提交给 ha
  • 1
  • 2
  • 3
  • 4
  • 5