EM算法与VBI_51CTO博客
EM算法浅析,我准备写一个系列的文章:EM算法浅析(一)-问题引出EM算法浅析(二)-算法初探一、EM算法简介在EM算法之一--问题引出中我们介绍了硬币的问题,给出了模型的目标函数,提到了这种含隐变量的极大似然估计要用EM算法解决,继而罗列了EM算法的简单过程,当然最后看到EM算法时内心是懵圈的,我们也简要的分析了一下,希望你在看了前一篇文章后,能大概知道E步和M步的目的和作用。为了加深一下理解,
1、MM 算法: MM算法是一种迭代优化方法,利用函数的凸性来寻找它们的最大值或最小值。 MM表示 “majorize-minimize MM 算法” 或“minorize maximize MM 算法”,取决于需要的优化是最大化还是最小化。 MM本身不是算法,而是一种如何构造优化算法的描述。 MM
转载 2018-01-28 19:59:00
511阅读
2评论
初识EM算法EM算法也称期望最大化(Expectation-Maximum,简称EM算法。它是一个基础算法,是很多机器学习领域算法的基础,比如隐式马尔科夫算法(HMM)等等。EM算法是一种迭代优化策略,由于它的计算方法中每一次迭代都分两步,其中一个为期望步(E步),另一个为极大步(M步),所以算法被称为EM算法(Expectation-Maximization Algorithm)。EM算法受到
       EM是我最近想深入学习的算法,在Mitchell的书中也提到EM可以用于贝叶斯网络中。下面主要介绍EM的整个推导过程。1. Jensen不等式      回顾优化理论中的一些概念。设f是定义域为实数的函数,如果对于所有的实数x,,那么f是凸函数。
翻译 精选 2013-12-04 10:11:07
520阅读
1点赞
看了很多文章,对这个概念总是理解的模模糊糊,今天把它摘抄并写出来,加深一下理解。EM算法,全称是Expectation maximization,期望最大化。摘抄了两位知乎大牛的解释—— 先来看看为什么需要EM算法以下是某知乎大牛的解释: 1 为什么需要EM算法? 我们遇到的大多数问题是这样的: A、已知一堆观测数据X B、和数据服从的统计模型然后利用数据来估计统计模型中的参数解决这个问题的思
定的(),那么f...
转载 2014-09-18 17:01:00
193阅读
2评论
      EM是我一直想深入学习的算法之一,第一次听说是在NLP课中的HMM那一节,为了解决HMM的参数估计问题,使用了EM算法。在之后的MT中的词对齐中也用到了。在Mitchell的书中也提到EM可以用于贝叶斯网络中。下面主要介绍EM的整个推导过程。1. Jensen不等式      回顾优化
EM算法——期望极大值算法1. EM算法的简介及案例介绍2. EM算法的推导3. EM算法3.1 算法步骤:3.2 EM算法的收敛性4. EM算法应用——求解高斯混合模型(GMM)的参数4.1 高斯混合模型(Gaussian mixture model,GMM)4.2 EM算法估计高斯混合模型的参数5.EM算法的推广——广义期望极大算法(GEM)   本文内容主体是基于李航老师的《统计学习方法
EM算法简述 EM算法是一种迭代算法,主要用于含有隐变量的概率模型参数的极大似然估计,或极大后验概率估计。EM算法的每次迭代由两步完成:E步,求期望M步,求极大。EM算法的引入如果概率模型的变量都是观测变量,那么给定数据,可以直接用极大似然估计法或贝叶斯估计法估计模型参数,但是当模型中含有隐变量时,就不能简单地使用这些估计方法。因此提出了EM算法EM算法流程假定集合 由观测数据 和未观测数据 组
EM是我一直想深入学习的算法之一,第一次听说是在NLP课中的HMM那一节,为了解决HMM的参数估计问题,使用了EM算法。在之后的MT中的词对齐中也用到了。在Mitchell的书中也提到EM可以用于贝叶斯网络中。 下面主要介绍EM的整个推导过程。 1. Jensen不等式       回顾优化理论中的一些概念。设f是定义域为实数的函数,如果对于所有的实数x,,那么f是凸函数。当x是向量时,如果
转载 2016-04-28 16:26:00
286阅读
2评论
EM是一种解决存在隐含变量优化问题的有效方法。EM的意思是“Expectation Maximization”最大期望,最大似然估计MLE的关系,EM是解决(不完全数据的)MLE问题的迭代算法 iterative algorithm,是一种在概率模型中寻找参数最大似然估计或者最大后验估计的算法, 其中概率模型依赖于无法观测的隐藏变量。EM算法流程:    
EM算法)The EM Algorithm EM是我一直想深入学习的算法之一,第一次听说是在NLP课中的HMM那一节,为了解决HMM的参数估计问题,使用了EM算法。在之后的MT中的词对齐中也用到了。在Mitchell的书中也提到EM可以用于贝叶斯网络中。 下面主要介绍EM的整个推导过程。 1. Je
转载 2017-03-10 11:37:00
101阅读
2评论
1.一般概念介绍 最大期望算法(Expectation-maximization algorithm,又译期望最大化算法)在统计中被用于寻找,依赖于不可观察的隐性变量的概率模型中,参数的最大似然估计。 在统计计算中,最大期望(EM算法是在概率(probabilistic)模型中寻找参数最大似...
转载 2013-11-10 22:28:00
123阅读
2评论
​​https://zhuanlan.zhihu.com/p/40991784​​​​https://www.jianshu.com/p/c57ef1508fa7​​
原创 2022-06-09 13:28:33
33阅读
二、算法流程直线式迭代优化的路径: 可以看到每一步都会向最优值前进一步,而且前进路线是平行于坐标轴的
原创 2022-08-26 10:49:32
112阅读
EM算法
原创 2021-08-19 12:53:05
123阅读
EM算法 EM算法要解决的问题 EM算法,机器学习经典算法。 期望最大化的算法。 通过观察每一个样本,的分布,猜测什么样的参数最符合分布的规则。这就是极大似然估计要做的事。 求解出参数,使参数组成的模型最符合样本的分布规则。就是根据样本反推参数。 什么样的u,σ让分布使恰好抽出这100名
原创 2021-07-22 10:26:57
697阅读
EM算法思想来源概率模型中有观测变量:就是已经知道的数据 //如果只有这种数
原创 2022-12-26 18:26:07
108阅读
学习一时爽,一直学习一直爽  Hello,大家好,我是 もうり,一个从无到有的技术+语言小白。https://blog.csdn.net/weixin_44510615/article/details/89216162EM 算法EM 算法,指的是最大期望算法(Expectation Maximization Algorithm,期望最大化算法),是一种迭代算法,在统计学中被用于寻找,依赖于不可观察
原创 2021-03-03 19:15:12
514阅读
  • 1
  • 2
  • 3
  • 4
  • 5