介绍 流程图用于通过可视媒体阐明决策过程。设计需要对整个系统有完整的了解,因此也需要人的专业知识。问题是:“就流程的复杂性而言,是否可以自动创建流程图以使其设计更快,更便宜且更具可扩展性?” 答案就是决策树!决策树可以自动推断出最能表达决策内部工作的规则。在经过标记的数据集上训练时,决策树将学习规则树(即流程图),并遵循该树来确定任何给定输入的输出。它们的简单性和高解释性使它们成为ML工具箱中的重
今天是机器学习专题的第23篇文章,我们今天分享的内容是十大数据挖掘算法之一的CART算法。CART算法全称是Classification and regression tree,也就是分类回归树的意思。和之前介绍的ID3和C4.5一样,CART算法同样是决策树模型的一种经典的实现。决策树这个模型一共有三种实现方式,前面我们已经介绍了ID3和C4.5两种,今天刚好补齐这最后一种。算法特
## 如何用Python输出逻辑回归p值
在统计学中,p值(p-value)是用于衡量统计假设的显著性的指标。在逻辑回归中,p值通常用于评估各个特征对目标变量的影响程度。本文将介绍如何使用Python来输出逻辑回归的p值。
### 1. 数据准备
首先,我们需要准备用于逻辑回归的数据。假设我们有一个二分类问题的数据集,其中包含多个特征和一个目标变量。我们可以使用pandas库来读取和处理数据
原创
2023-11-13 04:18:21
249阅读
在机器学习中,逻辑回归是一种广泛使用的分类算法,其本质是利用统计学方法判别样本属于某一类别的概率。逻辑回归的输出是一个介于0和1之间的值,此值表示样本属于正类的概率。这让逻辑回归特别适合处理二分类问题。下文将深入探讨逻辑回归输出的值的含义,以及如何通过Python实现逻辑回归模型。
### 逻辑回归输出的理解
逻辑回归的输出是通过一个逻辑函数(Logistic Function)来实现的。逻辑
之前曾在chongminglun 这个账号上发过一篇python statsmodel 回归结果提取的文章,现在在知乎重发一篇完整版,含代码和示例结果展示,并回答一些疑问statsmodel是python中一个很强大的做回归统计的包,类似R语言中的lm函数,通过summary可以快速查看训练的回归模型多种具体参数,但是很多同学不太清楚如何将特定的指标数值提取出来,本文以OLS回归结果为例
转载
2023-09-07 14:04:59
112阅读
概念决策树就是一个类似于流程图的树形结构,树内部的每一个节点代表的是对一个特征的测试,属的分支代表特征的每一个测试结果,树的叶子节点代表一种分类结果。决策树模型既可以做分类也可以做回归。分类就是树模型的每个叶子节点代表一个类别;回归就是根据特征向量来决定对应的输出值。回归树就是将特征空间划分成若干单元,每一个划分单元有一个特定的输出。对于测试数据,只要按照特征将其归到某个单元,便得到对应的输出值。
简介:GBDT 的全称是 Gradient Boosting Decision Tree,梯度提升树,在传统机器学习算法中,GBDT算的上TOP3的算法。想要理解GBDT的真正意义,那就必须理解GBDT中的Gradient Boosting 和Decision Tree分别是什么? 1. Decision Tree:CART回归树 首先,GBDT使用的决策树是CART回归树,无论是处理
树回归当回归的数据呈现非线性时,就需要使用树回归。树回归的基本逻辑获得最好的切分特征和切分特征值 遍历所有特征 针对某一特征,遍历该特征的所有值 针对某一特征值,进行划分数据,计算出划分数据之后的总方差, 若总方差最小,记下特征和特征值 当遍历完所有特征后,就能够获得最小方差的特征和特征值,并以此作为树的结点,划分左右子树,若没有特征,就返回特征值左子树为大于等于特征值的
1 CART,又名分类回归树CART,分类回归树,是几乎所有复杂决策树算法的基础,有以下特点:(1)CART是一棵二叉树; (2)CART既能是分类树,又能是回归树,由目标任务决定; (3)当CART是分类树时,采用GINI值作为结点分裂的依据;当CART是回归树时,采用MSE(均方误差)作为结点分裂的依据;2 分类树和回归树的区别?针对分类任务,就是分类树;针对回归任务,就是回归树。分类任务:预
回归决策树1. 原理概述2. 算法描述3. 简单实例3.1 实例计算过程3.2 回归决策树和线性回归对比4. 小结 1. 原理概述上篇文章已经讲到,关于数据类型,我们主要可以把其分为两类,连续型数据和离散型数据。在面对不同数据时,决策树也 可以分为两大类型: 分类决策树和回归决策树。 前者主要用于处理离散型数据,后者主要用于处理连续型数据。不管是回归决策树还是分类决策树,都会存在两个核心问题:如何
决策树(Disicion tree) A decision tree is a flowchart-like structure in which each internal node represents a "test" on an attribute (e.g. whether a coin flip comes up heads or tails), each bran
September 28, 20187 min to read逻辑回归原理及其python实现原理逻辑回归模型:$h_{\theta}(x)=\frac{1}{1+e^{-{\theta}^{T}x}}$逻辑回归代价函数:$J(\theta)=\frac{1}{m}\sum_{i=1}^{m}Cost(h_{\theta}(x^{(i)}),y^{(i)})$其中:该式子合并后:即逻辑回归的代价函
转载
2023-10-08 18:48:10
49阅读
文章目录概率图模型的综合叙述:Logistic Regression:逻辑回归综述:逻辑回归与线性回归的关系:逻辑函数(Logistic function):**决策边界(Decision Boundary)**代价函数(Cost Function)什么是代价函数?代价函数的常见形式代价函数的意义:代价函数与参数:代价函数与梯度狭义的多项逻辑回归参数化定义: 概率图模型的综合叙述:特征函数便是图
1.分类树 以C4.5分类树为例,C4.5分类树在每次分枝时,是穷举每一个feature的每一个阈值,找到使得按照feature<=阈值,和feature>阈值分成的两个分枝的熵最大的阈值(熵最大的概念可理解成尽可能每个分枝的男女比例都远离1:1),按照该标准分枝得到两个新节点,用同样方法继续分枝直到所有人都被分入性别唯一的叶子节点,或达到预设的终止条件,若最终叶子节点中的性别不唯一,
# 项目方案:Python中逻辑回归模型的概率转换
## 背景
逻辑回归是一种常用于二分类问题的统计模型,它将输入特征通过逻辑函数转换为概率。然而,有时候我们希望查看逻辑回归模型的原始线性输出值(也称为“logits”),而不是概率。理解这些原始输出值对于模型解释、特征重要性和决策边界分析是非常重要的。本项目旨在成一个Python示例,以便将逻辑回归的概率转换之前的原始值输出。
## 目标
回归树理论与波士顿房价案例一、回归树理论(1)回归树(2)回归树的建立(3)基于回归树的预测(4)剪枝二、K 近邻(回归)具体案例操作参考文献 一、回归树理论(1)回归树当数据拥有众多特征并且特征之间关系复杂时,构建全局模型变得困难而笨拙,并且很多实际问题都是非线性的,不可能使用全局线性模型来拟合任何数据。一种可行的方法是将数据集切分成很多份易建模的数据,然后利用线性回归技术来建模和拟合。如果首
1.bootstrap 在原始数据的范围内作有放回的再抽样M个, 样本容量仍为n,原始数据中每个观察单位每次被抽到的概率相等, 为1/n , 所得样本称为Bootstrap样本。于是可得到参数θ的一个估计值θ^(b),这样重复若干次,记为B 。为了可以避免一些误差点对少量树的决策影响。 2.决策树 : 信息熵: Ent(D
分类回归树(CART,Classification And Regression Tree)也属于一种决策树,上回文我们介绍了基于ID3算法的决策树。作为上篇,这里只介绍CART是怎样用于分类的。 分类回归树是一棵二叉树,且每个非叶子节点都有两个孩子,所以对于第一棵子树其叶子节点数比非叶子节点数多1。 表1 名称 体温 表面覆盖 胎生 产蛋 能飞 水生 有腿 冬眠 类标记 人 恒温 毛发 是 否
目录 回归树理论解释算法流程ID3 和 C4.5 能不能用来回归?回归树示例References 说到决策树(Decision tree),我们很自然会想到用其做分类,每个叶子代表有限类别中的一个。但是对于决策树解决回归问题,一直是一知半解,很多时候都是一带而过。对于一个回归问题,我们第一时间想到的可能就是线性回归(linear regression),当线性回归不好的时候,可能想着用 SV
CART 算法,英文全称叫做 Classification And Regression Tree,中文叫做分类回归树。ID3 和 C4.5 算法可以生成二叉树或多叉树,而 CART 只支持二叉树。同时 CART 决策树比较特殊,既可以作分类树,又可以作回归树。什么是分类树,什么是回归树呢?1.分类树可以处理离散数据,也就是数据种类有限的数据,它输出的是样本的类别,而回归树可以对连续型的数值进行预