opencv 弯道车道线检测_51CTO博客
使用cv2读取的图像的通道到是BGR通道,所以测试模型之前需要做BGR转RGB的操作。img=cv2.imread('515.jpg') cv2.imshow("aa",img) cv2.waitKey(-1)显示结果: 显示结果是正常的。如果转为RGB后?import matplotlib.pyplot as plt import cv2 img=cv2.imread('515.jpg') i
任务:一共要完成两项任务:1. 在所提供的公路图片上检测车道线并标记2. 在所提供的公路视频上检测车道线并标记方案:要检测出当前车道,就是要检测出左右两条车道直线。由于无人车一直保持在当前车道,那么无人车上的相机拍摄视频中,车道线的位置应该基本固定在某一个范围内:如果我们手动把这部分ROI区域抠出来,就会排除大部分干扰。接下来检测直线肯定用霍夫变换,但ROI区域内的边缘直线信息还是很多,考虑到
大模块:车辆检测车道线检测,车辆压线判别。思路一:1.车道实线检测部分,虽然用Hough变换可以检测出不错的实线效果,但是需要每张图自己去调参,因为opencv算法已经集成好了,只需要调用即可。所以检测实线我们需要自己设定一个指标,就是实际Hough函数的参数构成的数组,我们标定测量车道线的实际结果,这个时候会有一组参数,然后我们和每组参数得到的车道线进行loss设计,这实际好的车道线和各组参数
主要opencv函数介绍:CvSeq* cvHoughLines2( CvArr* image, void* line_storage, int method, double rho, double theta, int threshold, double param1=0, double param2=0 );image输入 8-比特、单通道 (二值) 图像,当用CV_HOUGH_PROBABI
转载 2023-11-10 02:22:52
109阅读
车道线检测 + 距离告警 + 转弯曲率半径计算。
转载 2021-06-24 10:38:58
944阅读
还没有搭建环境的小伙伴,戳戳这篇:VS2015 + OpenCV3.1 环境配置与项目搭建(C++版)一、效果展示对车辆所在车道车道线检测效果:二、基本思路如下图所示,实现车道线的 基本流程 如下:输入原图或视频。使用Canny()进行边缘检测。提取感兴趣区域。提取轮廓,同时过滤掉不是车道线的轮廓。对轮廓内点进行直线拟合。在原图上画出检测到的车道线。三、实战讲解3.1 主函数在主函数中,我们需要
作者:Priya Dwivedi编译:ronghuaiyang  (AI公园)导读车道线检测 + 距离告警 + 转弯曲率半径计算。代码:https://github.com/MaybeShewill-CV/lanenet-lane-detection来自模型的车道线预测介绍自动驾驶将在未来十年给旅行带来革命性的变化。目前,自动驾驶应用正在进行各种应用案例的测试,包括乘用车、机器人出租车、
转载 2022-10-05 10:21:46
564阅读
计算机视觉—车道线检测一、 方案设计目标二、 技术要求三、 主要研究内容1. 检测过程2. 视频分解3. 分割图像4. 筛选轮廓、计算中心5. 拟合车道线近似曲线6. 在图像帧上绘制曲线并输出坐标数组四、 技术创新五、 方案优化展望 一、 方案设计目标使用计算机视觉方法和技术,识别、检测提供视觉数据中的车道线目标。二、 技术要求使用OpenCV、深度学习等方法(自选),识别提供视频中的车道线
车道检测(Advanced Lane Finding Project)实现步骤:使用提供的一组棋盘格图片计算相机校正矩阵(camera calibration matrix)和失真系数(distortion coefficients).校正图片使用梯度阈值(gradient threshold),颜色阈值(color threshold)等处理图片得到清晰捕捉车道线的二进制图(binary ima
转载 2023-07-03 14:13:31
602阅读
近年来,基于人工智能的车道检测算法得到了广泛的研究。与传统的基于特征的方法相比,许多方法表现出了优越的性能。然而,当使用具有挑战性的图像时,其准确率通常仍在低80%或高90%之间,甚至更低。准确可靠的车道检测车道保持(LK)、变道自动化(LCA)和车道偏离警告(LDW)功能的关键特性。车道检测的研究可以追溯到20世纪80年代。世纪之交后,LDW和LK已经商业化,有些车辆甚至有LCA。DARPA和
利用概率霍夫变换,进行车道线的简单检测1、首先编写一个头文件(也可以在源文件中写一个类,一样的)#ifndef LANE_H //头文件的写法格式 if not define class Lane { //头文件中写一个类,其实不用头文件也行,预处理会自动copy过去 private: bool left_flag = true; //这里要设置为true,否则后头警告未初始化内存 bool
import cv2 import numpy as np import matplotlib.pyplot as plt #遍历文件夹 import glob from moviepy.editor import VideoFileClip """参数设置""" nx = 9 ny = 6 #获取棋盘格数据 file_paths = glob.glob("./camera_cal/calibr
目录1.直线检测原理2.车道线检测3.圆检测3.1 原理3.2 步骤3.3 API3.4 代码 1.直线检测原理参见:2.车道线检测参见:3.圆检测3.1 原理参见:3.2 步骤中值滤波,去燥边缘检测,发现可能的圆心从候选圆心开始计算最佳半径大小3.3 APICV_EXPORTS_W void HoughCircles( InputArray image, OutputArray circles
作者:Dt Pham编译:ronghuaiyang导读这是一个非常简单通用的pipeline,很有参考价值。在这个项目中,我使用Python和OpenCV构建了一个pipeline来检测车道线。该pipeline包含以下步骤:相机校正视角转换颜色阈值和区域掩码寻找车道像素测量车道曲线和曲率在原图像上显示结果1. 相机校正当相机在现实世界中看到3D目标并将其转换为2D图像时,就会发生图像失
文章目录0 前言1 课题背景2 实现效果3 卷积神经网络3.1卷积层3.2 池化层3.3 激活函数:3.4 全连接层3.5 使用tensorflow中keras模块实现卷积神经网络4 YOLOV56 数据集处理7 模型训练8 最后 0 前言? 这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不
0 前言? 优质竞赛项目系列,今天要分享的是? 深度学习 机器视觉 车位识别车道线检测该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!?学长这里给一个题目综合评分(每项满分5分)难度系数:3分工作量:3分创新点:4分简介你是不是经常在停车场周围转来转去寻找停车位。如果你的车辆能准确地告诉你最近的停车位在哪里,那是不是很爽?事实证明,基于深度学习和OpenCV解决这个问题相对容易,只需获取停车场
简易车道线识别方法 文章目录简易车道线识别方法1.先上效果图1.1原图:1.2结果图2.源代码3.阈值脚本4.谈谈优缺点优点:缺点: 1.先上效果图1.1原图:1.2结果图2.源代码#1.canny边缘检测 2.mask 3.霍夫变换 4.离群值过滤 5.最小二乘拟合 6.绘制直线 import cv2 import numpy as np import matplotl
目录1、前言2、霍夫线变换2.1、霍夫线变换是什么?2.2、在opencv中的基本用法2.2.1、HoughLinesP函数定义2.2.2、用法3、识别车道3.1、优化3.1.1、降噪3.1.2、过滤方向3.1.3、截选区域3.2、测试其它图片3.2.1、代码3.2.2、图片13.2.3、图片23.2.4、图片3 1、前言最近学习opencv学到了霍夫线变换,霍夫线变换是一个查找图像中直线的算法
作者:Dt Pham编译:ronghuaiyang 导读 这是一个非常简单通用的pipeline,很有参考价值。在这个项目中,我使用Python和OpenCV构建了一个pipeline来检测车道线。该pipeline包含以下步骤:相机校正视角转换颜色阈值和区域掩码寻找车道像素测量车道曲线和曲率在原图像上显示结果1. 相机校正当相机在现实世界中看到3D目标并将其转换为2D图像时,就
final_mark.py是最终,前面的都是一部分一部分测试的功能,用的是霍夫变换拟合,测试视频附在压缩文件中。关于OpenCV车道线检测前期芝士1.1基本方法1.1.1图像处理图像处理主要是先对图像进行灰度处理,高斯模糊,然后对其进行canny边缘检测,最后对得到的图像进行roi掩膜处理,进一步缩小范围。1.1.2霍夫变换霍夫变换(Hough)是一个检测间断点边界形状的方法。它通过将图像坐标空
  • 1
  • 2
  • 3
  • 4
  • 5