智能问答系统代码_51CTO博客
阅读大概需要15分钟Follow小博主,每天更新前沿干货作者:张墨一1 任务背景:本次实验拟设计一个智能问答系统,并应当保证该智能问答系统可以回答5个及其以上的问题。由于本实验室目前正在使用知识图谱搭建问答系统,故而这里将使用知识图谱的方式构建该智能问答系统。这里将构建一个关于歌曲信息的问答系统。以“晴天”为例,本系统应当能够回答晴天的歌词是什么,晴天是哪首专辑的歌曲,该专辑是哪一年发行的,该专辑
本次智能问答系统设计,分为前台、后台、知识库构建三个主要功能模块,其中前台是为问答操作提供界面,后台实现产品文档录入、知识库管理以及与前台通信、知识库构建根据录入文档实现“QA对”自动化生成。采用前台和后台结合的方式,前台是一个跟用户交互的聊天界面,后台从提供的文档中抽取出尽可能多的QA对,以支持前台app的交互。后台使用从页面查找css结构规则来找问题和采用神经网络训练文档,来更加准确合理的给出
      近些年来随着deeplearning时代的到来,一些AI的产品渐渐的走进了普通人的视线,作为一个喜欢追寻新技术的弄潮儿当然少不了对相关技术的关注,当然工作上也有一些应用,今天要介绍的是AI的一个方向智能问答,为什么是智能问答而不是NLP(自然语言处理)呢,我看过自然语言处理的文章很多各种零零碎碎,都是在某一点上讲,让一些非专业人员很难有
转载 2023-12-06 12:50:51
66阅读
本次智能问答系统设计,分为前台、后台、知识库构建三个主要功能模块,其中前台是为问答操作提供界面,后台实现产品文档录入、知识库管理以及与前台通信、知识库构建根据录入文档实现“QA对”自动化生成。采用前台和后台结合的方式,前台是一个跟用户交互的聊天界面,后台从提供的文档中抽取出尽可能多的QA对,以支持前台app的交互。后台使用从页面查找css结构规则来找问题和采用神经网络训练文档,来更加准确合理的给出
作者 | 杨韬 @腾讯围绕下面四点展开:背景介绍基于图谱的问答基于文档的问答未来展望01背景介绍 1. 从搜索到问答搜索引擎是人们获取信息的重要途径,其中包含了很多问答型的query。但传统的搜索只能返回TopK的网页,需要用户自己从网页中分析甄别答案,体验较差。原因是传统搜索引擎只是对query和doc做“匹配”,并不是真正细粒度地理解query。智能问答
机器学习部分一、特征工程1. 特征归一化1)什么是特征归一化对数值类型的特征做归一化可以将所有的特征都统一到一个大致相同的数值区间内。2)为什么要特征归一化为了消除数据特征之间的量纲影响,我们需要对特征进行归一化处理,使得不同指标之间具有可比性。例如,分析一个人的身高和体重对健康的影响,如果使用米(m)和千克(kg)作为单位,那么身高特征会在1.6~1.8m的数值范围内,体重特征会在50~100k
1.1 背景介绍学习目标: 了解智能对话系统的相关背景知识.掌握使用Unit对话API.什么是智能对话系统? 随着人工智能技术的发展, 聊天机器人, 语音助手等应用在生活中随处可见, 比如百度的小度, 阿里的小蜜, 微软的小冰等等. 其目的在于通过人工智能技术让机器像人类一样能够进行智能回复, 解决现实中的各种问题.从处理问题的角度来区分, 智能对话系统可分为: 任务导向型: 完
问答系统的概述 我想大家肯定看过很多关于自然语言处理(简称:NLP)技术方面的书籍或者论文,但在这里我不会详细叙述NLP技术方面的知识,而是想通过产品化思路结合NLP相关技术来搭建一个基础版的问答系统。本文通过基于问答对的问答型机器人作为引入,逐步分解其设计流程,用通俗易懂的语言描述问答型机器人的产品设计思路。好了,现在进入正题,让我先介绍一下问答系统对企业来说它能满足企业哪些业务需求,以及产生的
一、什么是智能问答智能问答系统就是基于大量语料数据,通过数学模型,相关编程语言实现的一个能够和人类进行对话,解决问题的一个软件系统。二、智能问答的分类1、任务型任务型问答就是指在特定场景下,具有比较稳定流程的问答,机器人通过在多轮对话的过程中逐渐完善自己想要获取的信息,通过逐渐完成的信息来给予用户回答。简单讲就是对于一个问句的,你需要知道一些其他答案才能给予准确回复,对于需要的信息设计一个流程,
转载 2023-08-07 17:05:58
495阅读
目前落地的对话机器人公司产品技术百度UnitKBQA+FAQgoogleDialogue flow网易七鱼阿里小蜜KBQA1. 百度的Unit智能对话定制与服务平台UNIT(Understanding and Interaction Technology),主页:https://ai.baidu.com/unit/home 一个简单的对话技能从无到有需要以下四个步骤:创建技能配置意图及词槽配置训练
问答系统是信息检索的一种高级形式,它能用准确、简洁的自然语言回答用户用自然语言提出的问题。其研究兴起的主要原因是人们对快速、准确地获取信息的需求。其中问答系统是目前人工智能和自然语 言处理领域中倍受关注并具有广泛发展前景的研究方向。不同类型的问答系统对于数据处理的方法存在不同,一般问答系统的处理框架都包括问句理解、信息检索、答案生成三个功能组成部分。 **问句理解:**顾客的意图只是一种抽象形式,
应用场景 智能问答机器人火得不行,开始研究深度学习在NLP领域的应用已经有一段时间,最近在用深度学习模型直接进行QA系统问答匹配。主流的还是CNN和LSTM,在网上没有找到特别合适的可用的代码,自己先写了一个CNN的(theano),效果还行,跟论文中的结论是吻合的。目前已经应用到了我们的产品上。原理 参看《Applying Deep Learning To Answer Select
项目完整地址:https://github.com/1105425455/Bert/tree/master 有训练好的模型 可以先看一下Bert的介绍。Bert简单介绍一.系统流程介绍。知识库是指存储大量有组织、有结构的知识和信息的仓库。这些知识和信息被存储为实体和实体关系的形式,通常用于支持智能问答系统。在一个知识库中,每个句子通常来说都具有三元组,例如“苏琳的性别是男”。在这个句子中,第一个实
学了很多什么分词,维特比,ui-gram之类的,但是能用起来才算真的学懂 三天的时间做完了这个项目 结果和想象不能说是完全一致 只能说是毫无关系 总结一下项目经验就是: 试试做个子数据集,要不然需要跑很久还不知道哪里错了 一步一步来想清楚步骤,一定是可以做出来的好的我们开始复盘!2.1第一部分: 读取文件,并把内容分别写到两个list里import json def read_corpus():
背景介绍什么是智能对话系统?随着人工智能技术的发展, 聊天机器人, 语音助手等应用在生活中随处可见, 比如百度的小度, 阿里的小蜜, 微软的小冰等等. 其目的在于通过人工智能技术让机器像人类一样能够进行智能回复, 解决现实中的各种问题.从处理问题的角度来区分, 智能对话系统可分为:任务导向型: 完成具有明确指向性的任务, 比如预定酒店咨询, 在线问诊等等.非任务导向型: 没有明确目的, 比如算算术
检索式的问答系统问答系统所需要的数据已经提供,对于每一个问题都可以找得到相应的答案,所以可以理解为每一个样本数据是 <问题、答案>。 那系统的核心是当用户输入一个问题的时候,首先要找到跟这个问题最相近的已经存储在库里的问题,然后直接返回相应的答案即可(但实际上也可以抽取其中的实体或者关键词)。 举一个简单的例子:假设我们的库里面已有存在以下几个<问题,答案>:<"{}
自动问答简介自动聊天机器人,也称为自动问答系统,由于所使用的场景不同,叫法也不一样。自动问答(Question Answering,QA)是指利用计算机自动回答用户所提出的问题以满足用户知识需求的任务。不同于现有搜索引擎,问答系统是信息服务的一种高级形式,系统返回用户的不再是基于关键词匹配排序的文档列表,而是精准的自然语言答案。近年来,随着人工智能的飞速发展,自动问答已经成为倍受关注且发展前景广泛
方法总结可以初步划分为两类,基于词频的方法,通常是一些较为传统的方法,以及基于语义的方法,通常是基于机器学习的方法。1、基于词频的方法在机器学习出现之前,传统文本匹配方法通常是根据句子中的词频信息进行检索的,如信息检索中的TF-IDF,BM25,语言模型等方法,主要解决字面相似度问题。这些方法由于计算简单,适用范围广,到现在依旧是很多场景下的优秀基准模型。1.1 TF-IDF介绍TF-IDF(te
在本博文中,我们将深入探讨“nlp智能问答系统”的构建与实现。随着自然语言处理技术的发展,这类系统已成为众多应用中的核心组成部分。我们将从协议背景开始,详细描述整个问题解决过程,通过可视化图表与代码示例强化理解。 ### 协议背景 本节将简要回顾与nlp智能问答系统相关的协议及其发展历程。以下是一个**背景时间轴**,展示了重要的里程碑事件: ```mermaid timeline
原创 1月前
16阅读
“人才引进落户政策”“企业法人变更登记”“如何办理公积金贷款”……在智慧政务业务中,智能客服能够7*24小时响应群众、企业关于日常事务办理、民生政策、企业经营法规等咨询,大力提升了信息获取的便利性。智能问答系统涉及自然语言处理、语音技术、检测技术、文字识别等多项AI技术,已成为了互联网+政企服务不可或缺的组成部分。在业务场景中,智能客服聚焦常见问题,将复杂的政策、众多的业务进行细致拆解和梳理,对问
  • 1
  • 2
  • 3
  • 4
  • 5