这个函数似乎可以直接用来画频谱图,而无需对数据先进行傅里叶变换,而是输入原始数据即可。先部分机翻,有时间再细翻matplotlib.pyplot.specgram(x, NFFT=None, Fs=None, Fc=None, detrend=None, window=None, noverlap=None, cmap=None, xextent=None, pad_to=None, sides=
这两天学习了scrapy框架,也是很头疼呀,一路都不是很顺利,爬取豆瓣时,还被封了IP,不过终于能够熟悉这个框架了。先一步步介绍吧。第一,安装scrapy库,说实话,一开始我就直接pip install scrapy,但是一直报错,只能默默地找资料,按步骤慢慢来。先进下面这个网址,找到Twisted、pywin32、zope.interface、pyopenSSL。
https://pypi.
转载
2023-08-17 16:39:05
0阅读
当我们用py完成一些功能,可以通过Pyinstaller将源码打包成exe来独立运行,用户使用时只需要执行这个exe文件即可,不需要在机器上再安装Python及其他包就可运行了。Pyinstaller打包方式一般分为 直接输入指令 和 利用spec文件进行打包。由于直接输入指令实际就是根据指令生成spec文件,再根据spec文件的内容进行打包操作,所以一下重点说明spec文件的内容。1.下载并安装
转载
2023-08-07 12:01:06
482阅读
有一些加工频率比较快的工序,如冲压件、电线的端子压接高度等,很多人认为就单一工序而言,不适于应用SPC,因为做出的Cpk值很高,没有改进的必要,此类过程监控的意义不大,这是事实。但从顾客的角度考虑,他们需要一致性高的产品,SPC可以帮助提高产品的一致性。我们可以从以下几个方面来理解和应用SPC:1. 使用SPC的目的:控制图可以用来监控过程随时间的变化。从这个角度来讲,加工频率比较快的工序,加工周
转载
2023-09-26 19:03:26
81阅读
# SPC (统计过程控制) 与 Python:可视化与分析
统计过程控制(SPC)是一种利用统计方法监控和控制生产过程的质量水平的方法。SPC的主要目的是通过分析生产过程中的变异,确保稳定和可预测的过程,以最终提高产品质量。今天,我们将围绕“SPC”和Python的结合,探讨如何使用Python实现SPC。
## SPC 的基本概念
SPC的核心是理解和分析过程变异。变异可以分为两类:
# Python计算SPC
## 什么是SPC?
SPC(Statistical Process Control)即统计过程控制,是一种通过统计方法来监测和控制过程稳定性的方法。SPC被广泛应用于质量管理领域,可以帮助企业实时监控生产过程,及时发现问题并采取措施,以确保产品质量稳定。
SPC主要包括数据的收集、图表的绘制和分析三个步骤。Python作为一种功能强大的编程语言,可以帮助我们进行
要实现质量管理体系(ITAF16949)离不开五大工具的支持,五大工具分别是:统计过程控制(SPC,Statistical Process Control)、测量系统分析(MSA,Measurement System Analyse)失效模式和效果分析(FMEA,Failure Mode & Effect Analyse)、产品质量先期策划(APQ
转载
2023-08-11 20:01:54
134阅读
我们在进行数据分析的时候,并不是所有的数据都需要进行分析。这就要求我们要对数据进行按条件选择。本文我将用IBM SPSS Statistics演示如何进行按条件筛选数据。1、打开数据如图所示,是一个学生个人信息的数据集。我将在此基础上演示如何筛选出语文成绩大于78的学生。 图1:数据展示2、菜单位置如图所示,第一步我们点击菜单栏中的“数据”按钮,第二步选择下级菜单中的“选择个案”。&n
转载
2023-08-27 09:18:26
333阅读
1. 简介统计过程控制(Statistical Process Control,SPC)是一种借助数理统计方法的过程控制工具。它对生产过程进行分析评价,根据反馈信息及时发现系统性因素出现的征兆,并采取措施消除其影响,使过程维持在仅受随机性因素影响的受控状态,以达到控制质量的目的。统计(S),将生产过程中抽象的“人机料法环测”的表现进行量化、可视化、可追踪过程中的变差,即将现实的问题转化为统计学的问
SPC怎么做应从以下四方面考虑: 一、如何确定关键产品特性关键产品特性应由客户确定,或质量工程师根据经验确定。二、如何确定关键过程参数关键过程参数可应用散布图、用分层法确定,或由实验设计(DOE)确定。三、SPC控制图怎么做1、规定的抽样间隔和样本大小抽取样本2、测量样本的质量特性值,计算其统计量数值3、在控制图上描点4、判断生产过程是否有并行四、如何利用SPC控制图分析过程状态当数据
# 使用 Python 实现 SPC 判异
SPC(Statistical Process Control,统计过程控制)是一种利用统计方法来监控和控制一个过程的方法。其主要目的是确保过程稳定,减少异常情况的发生。在这里,我们将介绍如何使用 Python 实现 SPC 判异。下面是整个流程的概述。
## 流程步骤概述
以下是实现 SPC 判异的基本步骤:
| 步骤
SPC与六西格玛SPC (Statistical Process Control) 统计过程控制,是六西格玛工业管理理论的其中一个重要模块。SPC的控制图 (control chart) 是数据可视化的一个重要手段。而控制图的选择应该根据实际需求来,这里不展开讲控制图,关于控制图的细节可以查找其他资料。(7 种控制图,8 个判异准则。) 简单介绍一下六西格玛,就是 6 sigma 的音译,sigm
转载
2023-10-23 19:25:12
76阅读
1、标准输入与输出python文件为 prog.py 输入文件为 test.inpython prog.py < test.in将程序的输出记录到文件test.out 中python prog.py < test.in > test.out将程序输出记录到文件test.out中,同时显示在屏幕上python prog.py < test.in | test.out输入数据文
转载
2023-10-08 09:50:06
107阅读
# 用 Python 开发统计过程控制(SPC)
统计过程控制(SPC)是一种用于监控和控制生产过程的统计方法。在这篇文章中,我们将逐步引导你实现基于 Python 的 SPC。我们将分解整个开发流程并提供详细的代码示例和注释。
## 开发流程说明
在开始之前,了解整个开发流程非常重要。以下是实现 SPC 的步骤:
| 步骤 | 描述 |
|----
## 如何用Python写SPC
### 简介
SPC(Statistical Process Control)统计过程控制是一种用于监控和改进过程稳定性和一致性的方法。它通过收集和分析数据来确定过程是否处于控制状态,并提供了检测异常和改进过程的工具。
在本文中,我将向你介绍如何使用Python编写SPC。我将依次介绍整个过程的步骤,并给出相应的代码示例和解释。通过这篇文章,你将学会如何使用
原创
2023-12-27 03:55:00
340阅读
TODA SPC(过程质量控制系统)SPC即统计过程控制(StatisticalProcessControl)。SPC是美国美国贝尔实验室休哈特(Shewhart)博士首先应用正态分布特性于生产过程中的管理,目前已成为生产过程中控制稳定产出的主要工具之一,在生产型企业中应用的非常广泛。 TODA SPC主要是指应用统计分析技术对生产过程进行实时监控,科学的区分出生产过程中产品质量的随机波动与异常
转载
2024-01-15 15:01:27
47阅读
SPC X-R控制图的操作步骤步骤1:确定控制对象,或称统计量。这里要注意下列各点:(1) 选择技术上最重要的控制对象。 (2) 若指标之间有因果关系,则宁可取作为因的指标为统计量。 (3) 控制对象要明确,并为大家理解与同意。 (4) 控制对象要能以数字来表示。 (5) 控制对象要选择容易测定并对过程容易采取措施者。步骤2:取预备数据(Preliminary data)。(1) 取25个子组。
转载
2024-01-12 01:42:24
314阅读
tf.cond and tf.whileloop本篇博客梳理一下 tensorflow python client API 与tf.cond和 tf.whileloop相关的部分,对于这两个api 的详细解释,请看我的第一篇博客和第二篇博客,这篇博客讲一些api 的实现细节。API 梳理tf.cond下图作为讲解tf.cond代码时的参考以下是tf.cond的伪代码。源代码在controlf_fl
最近学习项目管理之质量管理,其中涉及的工具技术有一个过程控制图在此网络一下资源 以便巩固知识。SPC即统计过程控制(Statistical Process Control)。主要是指应用统计分析技术对生产过程进行实时监控,科学的区分出生产过程中产品质量的随机波动与异常波动,从而对生产过程的异常趋势提出预警,以便生产管理人员及时采取措施,消除异常,恢复过程的稳定,从而达到提高和控制质量的目的。 在生
转载
2023-09-17 18:00:14
90阅读
什么是SPC?SPC(Statistical Process Control)统计过程控制,简称SPC,是美国休哈特博士在二十世纪二十年代所创造的理论。是一种借助数理统计方法的过程控制工具。在企业的质量控制中,可应用SPC对质量数据进行统计、分析,从而区分出生产过程中产品质量的正常波动与异常波动,以便对过程的异常及时提出预警,提醒管理人员采取措施消除异常,恢复过程的稳定性,从而提高产品的质量。而传
转载
2023-07-13 14:06:20
131阅读