前言在「面试」Redis 这一篇就够了 这篇文中有提到用布隆过滤器来解决缓存穿透。那么,今天,他来了,他来了,他脚踏七彩祥云来了(手动狗头)是什么?弗雷尔卓德之心布隆是 LOL 中偏辅助的英雄,下面给大家带来他的技能和出装介绍,这时一个拖鞋啪的一声打在了我的脸上......布隆过滤器(Bloom Filter) 是一种节省空间的概率数据结构,由 Burton Howard Bloom 在 1970
转载
2023-11-21 10:05:51
39阅读
什么是布隆过滤器布隆过滤器(Bloom Filter),是1970年,由一个叫布隆的小伙子提出的,距今已经五十年了。它实际上是一个很长的二进制向量和一系列随机映射函数,二进制大家应该都清楚,存储的数据不是0就是1,默认是0。主要用于判断一个元素是否在一个集合中,0代表不存在某个数据,1代表存在某个数据。布隆过滤器用途解决Redis缓存穿透举例:在爬虫时,对爬虫网址进行过滤,已经存在布隆中的网址,不
文章目录布隆过滤器的在Redis中的作用布隆过滤器的场景什么是布隆过滤器布隆过滤器原理Redis 集成布隆过滤器下载安装继承Redis 布隆过滤器实战添加订单ID到过滤器判断订单是否存在Redission 布隆过滤器实战 布隆过滤器的在Redis中的作用在Redis 缓存击穿(失效)、缓存穿透、缓存雪崩怎么解决?中我们说到可以使用布隆过滤器避免「缓存穿透」。我们只要记录了每个用户看过的历史记录,
转载
2023-08-30 08:49:38
82阅读
介绍布隆过滤器是指通过维护一张散列表对数据进行校验从而快速判定该数据是否存在于表中。在实际应用场景中主要用于预防恶意缓存击穿,一般在频繁查询的场景下,若大量恶意数据强行进行查询则会导致数据库和服务器压力过大,所有在查缓存之前往往会查询一下布隆过滤器验证此数据是否是原数据库中存在的有效数据。 既然涉及到哈希算法就势必会有哈希碰撞,而碰撞结果往往会导致布隆过滤器的数据误判(将不存在的数据误判定为存在)
转载
2023-09-24 09:14:58
80阅读
楔子我们前面介绍过 HyperLogLog 可以用来做基数统计,但它没提供判断一个值是否存在的查询方法,那我们如何才能在海量数据之中判断一个值是否存在呢?因为是海量数据,所以我们就无法将每个键值都存起来,然后再从结果中检索数据了,比如数据库中的 select count(1) from tablename where id='XXX',或者是使用 Redis 普通的查询方法 get XXX 等方式
转载
2023-07-10 00:57:43
125阅读
当你遇到数据量大,又需要去重的时候就可以考虑布隆过滤器,如下场景:解决 Redis 缓存穿透问题(面试重点);邮件过滤,使用布隆过滤器实现邮件黑名单过滤;爬虫爬过的网站过滤,爬过的网站不再爬取;推荐过的新闻不再推荐;什么是布隆过滤器布隆过滤器 (Bloom Filter)是由 Burton Howard Bloom 于 1970 年提出,它是一种 space efficient 的概率型
转载
2023-10-12 21:45:37
55阅读
前言前面在说缓存穿透的时候说到解决方案的时候正好有提到布隆过滤器,正好现在就来说一说这个布隆过滤器是怎么一回事,在说布隆过滤器之前可能需要先说下位图算法位图位图(Bitmap),又称栅格图(英语:Raster graphics)或点阵图,是使用像素阵列(Pixel-array/Dot-matrix点阵)来表示的图像(摘自百度百科)。我们可以理解为是一个 bit 数组,每个元素存储数据的状态(由于每
转载
2023-08-12 15:20:13
71阅读
关于布隆过滤器,这个名词其实在我学 redis 不久后就知道了,但是对他没有一种很深刻的理解。前言首次听到布隆过滤器还是在Redis的缓存穿透的解决方案中看到的。当时一直没有应用场景,就一直摆在那,也没仔细学。但是现在感觉不卷,已经快没有活路,所以又开始看起了面试题。今天谈到的就是布隆过滤器,偏向于理论知识卷又卷不动,躺又躺不平,麻了。一、什么是布隆过滤器?布隆过滤器,术语解释:它实际上是一个很长
目录前言一、什么是布隆过滤器(Bloom Filter)二、布隆过滤器的原理三、布隆过滤器的工作流程四、布隆过滤器的实际应用场景五、Java实现布隆过滤器5.1、Guava5.2、Redission5.3、Apache Commons5.4、Jedis前言 想必大家都知道布隆过滤器,它是为了预防黑客发起大量非法请求的一种手段,例如Redis的缓
转载
2023-09-04 18:40:05
9阅读
速记为什么使用布隆过滤器? 1.为了省内存,提高速率 2.因为1所以布隆过滤器不需要百分百正确 3.说存在不一定存在,说不存在一定不存在 4.在解决缓存穿透的问题时,拦截了大部分的请求,只有小部分携带了大量信息的恶意请求访问到了数据库 5.不准确的原因是可能会和别的key发生冲突,所以位数组越大精确度越高,但是占用内存越多。所以在设置布隆过滤器的时候,这个容错率是多少是百分之一还是百分之十,是否牺
转载
2023-08-20 18:40:48
258阅读
布隆过滤器(Bloom Filter)详解 基本概念如果想判断一个元素是不是在一个集合里,一般想到的是将所有元素保存起来,然后通过比较确定。链表,树等等数据结构都是这种思路. 但是随着集合中元素的增加,我们需要的存储空间越来越大,检索速度也越来越慢。不过世界上还有一种叫作散列表(又叫哈希表,Hash table)的数据结构。它可以通过一个Hash函数将一个元素映射成一个位阵列(Bit A
这一篇是我重写的,之前写过一篇发现面试的时候问的问题虽然大概能解决,但是有几个点没有整理到位,所以自己给自己列出了很多面试常见的问题,准备一篇一篇去解决。本文整体思路是延续之前的那篇文章,在此基础之上添加了几个点而已。布隆过滤器主要是在redis中问的比较多,因此像这种数据结构类的,主要是考原理以及使用场景。下面一点一点开始逐步介绍。一、认识布隆过滤器1、概念布隆过滤器其实就是加快判定一个元素是否
转载
2023-10-01 12:26:27
76阅读
布隆过滤器一般用来判断一个数据是否在一个很大的数据集合里面。当然可以用数组,集合,树等数据结构和各种查找法都可以做同样的事情,但是布隆过滤器有更好的时间效率和空间效率。比特币实现SPV节点时使用了布隆过滤器来查询交易。布隆过滤器可以判断一个数在不在集合里,但存在一定的误判率。布隆过滤器的核心是一个超大的位数组和几个哈希函数。假设位数组的长度为m,哈希函数的个数为k。 &nbs
转载
2023-08-10 12:57:26
54阅读
1.使用场景:推荐系统给用户推荐新闻,避免重复推送。需要考虑问题:从用户观看历史中筛选出没有看过的新闻进行推送,就需要数据库中频繁的使用exists进行查询,但是当用户量很大时,数据库很难顶住压力。解决方法:1.1.使用缓存?但是日子长了,会浪费很大空间,不是长久之计,不是很好的解决办法。1.2.这时布隆过滤器就可以很好的解决这个需求了,可以节约90%以上的空间,缺点就是稍微有那么一点不准确,存在
转载
2023-06-28 16:22:24
314阅读
文章目录布隆过滤器 - Redis 布隆过滤器,Guava 布隆过滤器 BloomFilter1、布隆过滤器的起源,用途2、布隆过滤器的概
原创
2022-05-26 08:23:00
1279阅读
本文目录本文导读一、什么是布隆过滤器(Bloom Filter)二、布隆过滤器的工作原理与设计思想三、Redis中的布隆过滤器1、安装 RedisBloom1.1、docker镜像安装1.2、直接编译2、Redis中布隆过滤器的使用四、布隆过滤器特点与使用场景总结本文导读本文系统性学习布隆过滤器(Bloom Filter),了解什么是布隆过滤器,布隆过滤器的原理,同时学习Redis中的布隆过滤器的
转载
2023-07-19 13:57:57
11阅读
python实现布隆过滤器及原理解析 布隆过滤器( BloomFilter )是一种数据结构,比较巧妙的概率型数据结构(probabilistic data structure),特点是高效地插入和查询,可以用来告诉你 “某样东西一定不存在或者可能存在”。这篇文章主要介绍了python实现布隆过滤器 ,需要的朋友可以参考下 在学习redis过程中提到一个缓存击穿的问
转载
2023-12-19 20:56:13
30阅读
在学习redis过程中提到一个缓存穿透的问题, 书中参考的解决方案之一是使用布隆过滤器, 那么就有必要来了解一下什么是布隆过滤器。在参考了许多博客之后, 写个总结记录一下。一、布隆过滤器简介什么是布隆过滤器?本质上布隆过滤器( BloomFilter )是一种数据结构,比较巧妙的概率型数据结构(probabilistic data structure),特点是高效地插入和查询,可以用来告诉你 “某
转载
2023-08-16 17:08:04
18阅读
其实对布隆过滤器的了解是因为“布隆”这个英雄!哈哈哈哈哈哈。 布隆过滤器的使用场景: 我们都知道,我们只要在浏览器的地址栏中输入url就可以访问自己想要访问的资源了,比例如http://www.baidu.com 但是有些网站你前一阵子还可以访问,但是最近访问的时候发现访问时报404,这时什么原因呢?也许是服务器被开发人员主动的关闭了,也许该网站所提供的资源不符合社会主义核心
转载
2023-08-08 08:47:38
149阅读
content{:toc}布隆过滤器原理布隆过滤器是用来判断一个元素是否出现在给定集合中的重要工具,具有快速,比哈希表更节省空间等优点,而缺点是存在一定的误识别率(fast-positive),也就是它可能会把不是集合内的元素判定为存在于集合内,不过这样的概率相当小。其原理也比较简单,如图所示,S 集合中有 n 个元素,利用 k 个哈希函数,将 S 中的每个元素映射到一个长度为 m 的位(bit)