消息中间件通常需要解决哪些问题,在解决这些问题当中会遇到什么困难,Apache RocketMQ作为阿里开源的一款高性能、高吞吐量的分布式消息中间件否可以解决,规范中如何定义这些问题。然后本文将介绍RocketMQ的架构设计,以期让读者快速了解RocketMQ。

消息中间件需要解决哪些问题?

Publish/Subscribe

发布订阅是消息中间件的最基本功能,也是相对于传统RPC通信而言。在此不再详述。

Message Priority

规范中描述的优先级是指在一个消息队列中,每条消息都有不同的优先级,一般用整数来描述,优先级高的消息先投递,如果消息完全在一个内存队列中,那么在投递前可以按照优先级排序,令优先级高的先投递。
由于RocketMQ所有消息都是持久化的,所以如果按照优先级来排序,开销会非常大,因此RocketMQ没有特意支持消息优先级,但是可以通过变通的方式实现类似功能,即单独配置一个优先级高的队列,和一个普通优先级的队列, 将不同优先级发送到不同队列即可。

对于优先级问题,可以归纳为2类:

  1. 只要达到优先级目的即可,不是严格意义上的优先级,通常将优先级划分为高、中、低,或者再多几个级别。每个优先级可以用不同的topic表示,发消息时,指定不同的topic来表示优先级,这种方式可以解决绝大部分的优先级问题,但是对业务的优先级精确性做了妥协。
  2. 严格的优先级,优先级用整数表示,例如0 ~ 65535,这种优先级问题一般使用不同topic解决就非常不合适。如果要让MQ解决此问题,会对MQ的性能造成非常大的影响。这里要确保一点,业务上是否确实需要这种严格的优先级,如果将优先级压缩成几个,对业务的影响有多大?

Message Order

消息有序指的是一类消息消费时,能按照发送的顺序来消费。例如:一个订单产生了3条消息,分别是订单创建,订单付款,订单完成。消费时,要按照这个顺序消费才能有意义。但是同时订单之间是可以并行消费的。
RocketMQ可以严格的保证消息有序。

Message Filter

Broker端消息过滤

在Broker中,按照Consumer的要求做过滤,优点是减少了对于Consumer无用消息的网络传输。
缺点是增加了Broker的负担,实现相对复杂。

  1. 淘宝Notify支持多种过滤方式,包含直接按照消息类型过滤,灵活的语法表达式过滤,几乎可以满足最苛刻的过滤需求。
  2. 淘宝RocketMQ支持按照简单的Message Tag过滤,也支持按照Message Header、body进行过滤。
  3. CORBA Notification规范中也支持灵活的语法表达式过滤。

Consumer端消息过滤

这种过滤方式可由应用完全自定义实现,但是缺点是很多无用的消息要传输到Consumer端。

Message Persistence

消息中间件通常采用的几种持久化方式:

  1. 持久化到数据库,例如Mysql。
  2. 持久化到KV存储,例如levelDB、伯克利DB等KV存储系统。
  3. 文件记录形式持久化,例如Kafka,RocketMQ
  4. 对内存数据做一个持久化镜像,例如beanstalkd,VisiNotify
  5. (1)、(2)、(3)三种持久化方式都具有将内存队列Buffer进行扩展的能力,(4)只是一个内存的镜像,作用是当Broker挂掉重启后仍然能将之前内存的数据恢复出来。

JMS与CORBA Notification规范没有明确说明如何持久化,但是持久化部分的性能直接决定了整个消息中间件的性能。

RocketMQ充分利用Linux文件系统内存cache来提高性能。

Message Reliablity

影响消息可靠性的几种情况:

  1. Broker正常关闭
  2. Broker异常Crash
  3. OS Crash
  4. 机器掉电,但是能立即恢复供电情况。
  5. 机器无法开机(可能是cpu、主板、内存等关键设备损坏)
  6. 磁盘设备损坏。

(1)、(2)、(3)、(4)四种情况都属于硬件资源可立即恢复情况,RocketMQ在这四种情况下能保证消息不丢,或者丢失少量数据(依赖刷盘方式是同步还是异步)。

(5)、(6)属于单点故障,且无法恢复,一旦发生,在此单点上的消息全部丢失。RocketMQ在这两种情况下,通过异步复制,可保证99%的消息不丢,但是仍然会有极少量的消息可能丢失。通过同步双写技术可以完全避免单点,同步双写势必会影响性能,适合对消息可靠性要求极高的场合,例如与Money相关的应用。

RocketMQ从3.0版本开始支持同步双写。

Low Latency Messaging

在消息不堆积情况下,消息到达Broker后,能立刻到达Consumer。
RocketMQ使用长轮询Pull方式,可保证消息非常实时,消息实时性不低于Push。

At least Once

是指每个消息必须投递一次。
RocketMQ Consumer先pull消息到本地,消费完成后,才向服务器返回ack,如果没有消费一定不会ack消息,所以RocketMQ可以很好的支持此特性。

Exactly Only Once

  1. 发送消息阶段,不允许发送重复的消息。
  2. 消费消息阶段,不允许消费重复的消息。

只有以上两个条件都满足情况下,才能认为消息是“Exactly Only Once”,而要实现以上两点,在分布式系统环境下,不可避免要产生巨大的开销。所以RocketMQ为了追求高性能,并不保证此特性,要求在业务上进行去重,也就是说消费消息要做到幂等性。RocketMQ虽然不能严格保证不重复,但是正常情况下很少会出现重复发送、消费情况,只有网络异常,Consumer启停等异常情况下会出现消息重复。

Broker的Buffer满了怎么办?

Broker的Buffer通常指的是Broker中一个队列的内存Buffer大小,这类Buffer通常大小有限,如果Buffer满了以后怎么办?
下面是CORBA Notification规范中处理方式:

  1. RejectNewEvents 拒绝新来的消息,向Producer返回RejectNewEvents错误码。
  2. 按照特定策略丢弃已有消息
  • AnyOrder - Any event may be discarded on overflow. This is the default setting for this property.
  • FifoOrder - The first event received will be the first discarded.
  • LifoOrder - The last event received will be the first discarded.
  • PriorityOrder - Events should be discarded in priority order, such that lower priority events will be discarded before higher priority events.
  • DeadlineOrder - Events should be discarded in the order of shortest expiry deadline first.

RocketMQ没有内存Buffer概念,RocketMQ的队列都是持久化磁盘,数据定期清除。

对于此问题的解决思路,RocketMQ同其他MQ有非常显著的区别,RocketMQ的内存Buffer抽象成一个无限长度的队列,不管有多少数据进来都能装得下,这个无限是有前提的,Broker会定期删除过期的数据,例如Broker只保存3天的消息,那么这个Buffer虽然长度无限,但是3天前的数据会被从队尾删除。

此问题的本质原因是网络调用存在不确定性,即既不成功也不失败的第三种状态,所以才产生了消息重复性问题。

回溯消费

回溯消费是指Consumer已经消费成功的消息,由于业务上需求需要重新消费,要支持此功能,Broker在向Consumer投递成功消息后,消息仍然需要保留。并且重新消费一般是按照时间维度,例如由于Consumer系统故障,恢复后需要重新消费1小时前的数据,那么Broker要提供一种机制,可以按照时间维度来回退消费进度。
RocketMQ支持按照时间回溯消费,时间维度精确到毫秒,可以向前回溯,也可以向后回溯。

消息堆积

消息中间件的主要功能是异步解耦,还有个重要功能是挡住前端的数据洪峰,保证后端系统的稳定性,这就要求消息中间件具有一定的消息堆积能力,消息堆积分以下两种情况:

  1. 消息堆积在内存Buffer,一旦超过内存Buffer,可以根据一定的丢弃策略来丢弃消息,如CORBA Notification规范中描述。适合能容忍丢弃消息的业务,这种情况消息的堆积能力主要在于内存Buffer大小,而且消息堆积后,性能下降不会太大,因为内存中数据多少对于对外提供的访问能力影响有限。
  2. 消息堆积到持久化存储系统中,例如DB,KV存储,文件记录形式。 当消息不能在内存Cache命中时,要不可避免的访问磁盘,会产生大量读IO,读IO的吞吐量直接决定了消息堆积后的访问能力。

评估消息堆积能力主要有以下四点:

  1. 消息能堆积多少条,多少字节?即消息的堆积容量。
  2. 消息堆积后,发消息的吞吐量大小,是否会受堆积影响?
  3. 消息堆积后,正常消费的Consumer是否会受影响?
  4. 消息堆积后,访问堆积在磁盘的消息时,吞吐量有多大?

分布式事务

已知的几个分布式事务规范,如XA,JTA等。其中XA规范被各大数据库厂商广泛支持,如Oracle,Mysql等。其中XA的TM实现佼佼者如Oracle Tuxedo,在金融、电信等领域被广泛应用。

分布式事务涉及到两阶段提交问题,在数据存储方面的方面必然需要KV存储的支持,因为第二阶段的提交回滚需要修改消息状态,一定涉及到根据Key去查找Message的动作。RocketMQ在第二阶段绕过了根据Key去查找Message的问题,采用第一阶段发送Prepared消息时,拿到了消息的Offset,第二阶段通过Offset去访问消息,并修改状态,Offset就是数据的地址。

RocketMQ这种实现事务方式,没有通过KV存储做,而是通过Offset方式,存在一个显著缺陷,即通过Offset更改数据,会令系统的脏页过多,需要特别关注。

定时消息

定时消息是指消息发到Broker后,不能立刻被Consumer消费,要到特定的时间点或者等待特定的时间后才能被消费。
如果要支持任意的时间精度,在Broker层面,必须要做消息排序,如果再涉及到持久化,那么消息排序要不可避免的产生巨大性能开销。
RocketMQ支持定时消息,但是不支持任意时间精度,支持特定的level,例如定时5s,10s,1m等。

消息重试

Consumer消费消息失败后,要提供一种重试机制,令消息再消费一次。Consumer消费消息失败通常可以认为有以下几种情况:

  1. 由于消息本身的原因,例如反序列化失败,消息数据本身无法处理(例如话费充值,当前消息的手机号被注销,无法充值)等。这种错误通常需要跳过这条消息,再消费其他消息,而这条失败的消息即使立刻重试消费,99%也不成功,所以最好提供一种定时重试机制,即过10s秒后再重试。
  2. 由于依赖的下游应用服务不可用,例如db连接不可用,外系统网络不可达等。遇到这种错误,即使跳过当前失败的消息,消费其他消息同样也会报错。这种情况建议应用sleep 30s,再消费下一条消息,这样可以减轻Broker重试消息的压力。

RocketMQ Overview

RocketMQ是否解决了上述消息中间件面临的问题,接下来让我们一探究竟。

RocketMQ 是什么?

十分钟入门RocketMQ_java

上图是一个典型的消息中间件收发消息的模型,RocketMQ也是这样的设计,简单说来,RocketMQ具有以下特点:

  • 是一个队列模型的消息中间件,具有高性能、高可靠、高实时、分布式特点。
  • Producer、Consumer、队列都可以分布式。
  • Producer向一些队列轮流发送消息,队列集合称为Topic,Consumer如果做广播消费,则一个consumer实例消费这个Topic对应的所有队列,如果做集群消费,则多个Consumer实例平均消费这个topic对应的队列集合。
  • 能够保证严格的消息顺序
  • 提供丰富的消息拉取模式
  • 高效的订阅者水平扩展能力
  • 实时的消息订阅机制
  • 亿级消息堆积能力
  • 较少的依赖

RocketMQ 物理部署结构

十分钟入门RocketMQ_java_02

如上图所示, RocketMQ的部署结构有以下特点:

  • Name Server是一个几乎无状态节点,可集群部署,节点之间无任何信息同步。
  • Broker部署相对复杂,Broker分为Master与Slave,一个Master可以对应多个Slave,但是一个Slave只能对应一个Master,Master与Slave的对应关系通过指定相同的BrokerName,不同的BrokerId来定义,BrokerId为0表示Master,非0表示Slave。Master也可以部署多个。每个Broker与Name Server集群中的所有节点建立长连接,定时注册Topic信息到所有Name Server。
  • Producer与Name Server集群中的其中一个节点(随机选择)建立长连接,定期从Name Server取Topic路由信息,并向提供Topic服务的Master建立长连接,且定时向Master发送心跳。Producer完全无状态,可集群部署。
  • Consumer与Name Server集群中的其中一个节点(随机选择)建立长连接,定期从Name Server取Topic路由信息,并向提供Topic服务的Master、Slave建立长连接,且定时向Master、Slave发送心跳。Consumer既可以从Master订阅消息,也可以从Slave订阅消息,订阅规则由Broker配置决定。

RocketMQ 逻辑部署结构

十分钟入门RocketMQ_java_03

如上图所示,RocketMQ的逻辑部署结构有Producer和Consumer两个特点。

Producer Group

用来表示一个发送消息应用,一个Producer Group下包含多个Producer实例,可以是多台机器,也可以是一台机器的多个进程,或者一个进程的多个Producer对象。一个Producer Group可以发送多个Topic消息,Producer Group作用如下:

  1. 标识一类Producer
  2. 可以通过运维工具查询这个发送消息应用下有多个Producer实例
  3. 发送分布式事务消息时,如果Producer中途意外宕机,Broker会主动回调Producer Group内的任意一台机器来确认事务状态。

Consumer Group

用来表示一个消费消息应用,一个Consumer Group下包含多个Consumer实例,可以是多台机器,也可以是多个进程,或者是一个进程的多个Consumer对象。一个Consumer Group下的多个Consumer以均摊方式消费消息,如果设置为广播方式,那么这个Consumer Group下的每个实例都消费全量数据。

RocketMQ 数据存储结构

十分钟入门RocketMQ_java_04

如上图所示,RocketMQ采取了一种数据与索引分离的存储方法。有效降低文件资源、IO资源,内存资源的损耗。即便是阿里这种海量数据,高并发场景也能够有效降低端到端延迟,并具备较强的横向扩展能力。