本文中若有任何疏漏错误,有任何建议和意见,请通过 caspar at linux.alibaba.com 反馈。
1. 引言导读:本文翻译自 Brendan Gregg 去年的一片博客文章 “CPU Utilization is Wrong”,从标题就能想到这篇文章将会引起争议。文章一上来就说,我们“人人皆用、处处使用,每个性能监控工具里都在用”的
top
命令里的 “%CPU” 指标,是不对的,其并非用于衡量 CPU 的繁忙程度的正确指标,作者谴责了一下众人(或许也包括你我)的这一行为是具有很大的误导性(deeply misleading)的,而且这种情况还在连年恶化。对于这么大一顶帽子,让我们暂且按下躁动的心,听听作者是怎么深入阐释他的观点的。
可能你认为的 90% CPU 利用率意味着这样的情形:
而实际却可能是这样的:
CPU 并非 90% 的时间都在忙着,很大一部分时间在等待,或者说“停顿(Stalled)”了。这种情况表示处理器流水线停顿,一般由资源竞争、数据依赖等原因造成。多数情况下表现为等待访存操作,其中又以读操作为主。在停顿周期内,不能执行指令,这意味着你的程序不往前走。值得注意的是,图中 “Stalled” 状态所占的比例是作者依据生产环境中的典型场景计算而来,具有普遍现实意义。因此,大多时候 CPU 处于停顿状态,而你却不知道,因为 CPU 利用率这个指标没有告诉你真相。通过进一步分析 CPU 停顿的原因,可以指导代码优化,提高执行效率,这是我们深入理解CPU微架构的动力之一。
2. CPU 利用率的真实含义是什么?我们通常所说的CPU利用率是指 “non-idle time”:即CPU不执行 idle thread 的时间。操作系统内核会在上下文切换时记录CPU的运行时间。假设一个 non-idle thread 开始运行,100ms 后结束,内核会认为这段时间内 CPU 利用率为 100%。这种度量方式源于分时复用系统。早在阿波罗登月舱的导航计算机中,idle thread 当时被叫做 “DUMMY JOB”,工程师通过比对运行 “DUMMY JOB” 和 “实际任务” 的时间来衡量导航系统的利用率。
那么这个所谓“利用率”的问题在哪儿呢?
当今时代,CPU 执行速度远远大于内存访问速度,等待访存的时间成为占用 CPU 时间的主要部分。当你在 top 中看到很高的 “%CPU”,你可能认为处理器是瓶颈,但实际上却是内存。在过去很长一段时间内,CPU 频率增长的速度大于 DRAM 访存延时降低的速度(CPU DRAM gap),直到2005年前后,处理器厂商们才开始放弃“频率路线”,转向多核、超线程技术,再加上多处理器架构,这些都导致访存需求急剧上升。尽管厂商通过增大 cache 容量、优化 cache 策略、提升总线带宽来试图缓解访存瓶颈,但我们的程序仍深受 CPU stall 困扰。
3. 如何真正辨别 CPU 在做些什么?
在 PMC(Performance Monitoring Counters) 的帮助下,我们能看到更多的 CPU 运行状态信息。下图中,perf
采集了10秒内全部 CPU 的运行状态。
这里我们重点关注的核心度量指标是 IPC(instructions per cycle),它表示平均每个 CPU cycle 执行的指令数量
,很显然该数值越大性能越好。上图中
IPC 为 0.78,看起来还不错,是不是 78% busy 呢?现代处理器一般有多条流水线,运行 perf
的那台机器,IPC 的理论值可达到 4.0。如果我们从 IPC
的角度来看,这台机器只运行到其处理器最高速度的 19.5%(0.78 / 4.0)。幸运的是,在处理器内部,有很多 PMU event,可用来帮助我们分析造成 CPU stall 的原因。用好 PMU 需要我们熟悉处理器微架构,可以参考 Intel SDM。
如果 IPC < 1.0, 很可能是 Memory stall 占主导,可从软件和硬件两个方面考虑这个问题。软件方面:减少不必要的访存操作,提升 cache 命中率,尽量访问本地节点内存;硬件方面:增加 cache 容量,加快访存速度,提升总线带宽。
如果IPC > 1.0, 很可能是计算密集型的程序。可以试图减少执行指令的数量:消除不必要的工作。火焰图CPU flame graphs,非常适用于分析这类问题。硬件方面:尝试超频、使用更多的 core 或 hyperthread。作者根据PMU相关的工作经验,设定了1.0这个阈值,用于区分访存密集型(memory-bound)和计算密集型(cpu-bound)程序。读者可以根据自己的实际工作平台,合理调整这个阈值。
5. 性能工具应该告诉我们什么?
作者认为,性能工具中使用 %CPU 时都应该附带上 IPC,或者将 %CPU 拆分为指令执行消耗 cycle(%INS) 和 stalled 的 cycle(%STL)。对应到 top
,在 Linux 系统有一个能够显示每个处理器 IPC 的工具 tiptop
:
除了访存导致的 stall 容易让人误解 CPU 利用率外,还有其他一些因素:
-
温度原因导致处理器 stall;
-
Turboboost 干扰了时钟速率;
-
内核使得时钟速率加快;
-
平均带来的问题:1分钟利用率平均 80%,掩盖了中间 100% 部分;
-
自旋锁: CPU 一直在被使用,同时 IPC 也很高,但是应用逻辑上并没有任何进展。
7. 更新:CPU 利用率真的错了吗?
这篇文章引起了大量留言:
-
http://www.brendangregg.com/blog/2017-05-09/cpu-utilization-is-wrong.html
-
https://news.ycombinator.com/item?id=14301739
-
https://www.reddit.com/r/programming/comments/6a6v8g/cpu_utilization_is_wrong/
总结下作者的回答是:这里讨论的并不是 iowait (那是磁盘IO),而且如果你已经确认是访存密集型,是有些处理办法(参考上面)。
那么 CPU 利用率指标是确确实实错误的,还是只是容易误导?如作者前面所说,他认为许多人把高 CPU 利用率理解为瓶颈在 CPU 上,这一行为才是错误的;其实单看 CPU 利用率并不清楚瓶颈在何处,很多时候瓶颈是在外部。这个指标技术上看是否正确?如果 CPU stall 的周期并不能被其他地方使用,它们是不是也就因此是“忙于等待“(听起来有点矛盾)?在有些情况,确实如此,你可以说 CPU 利用率作为操作系统级别的指标技术上看是对的,但是容易产生误导。从另一个角度来说,有超线程的情况下,那些 stalled 的周期是可以被其他线程使用的,这时 “%CPU” 可能会将可用的周期统计为正在使用,这种情况是错误的。这篇文章作者想关注的是解释清楚这个问题,并给出解决方法建议,但没错,CPU 利用率这个指标本身也是存在一些问题的。
当你可能会说利用率作为一个指标已经不对,Andrian Cockcroft之前讨论已经指出过 (http://www.hpts.ws/papers/2007/Cockcroft_HPTS-Useless.pdf )。
8. 结论CPU 利用率已经开始成为一个容易误导的指标:它包含访存导致的等待周期,这样会影响一些新应用。也许 “%CPU” 应该重命名为 “%CYC”(cycles的缩写)。要清楚知道 “%CPU” 的含义,需要使用其他指标进行辅助,其中就包括每周期指令数(IPC)。IPC < 1.0 多半意味着访存密集型,IPC > 1.0 多半意味着计算密集型。作者之前的文章中涵盖有 IPC 说明,以及用于测量 IPC 的 Performance Monitoring Counters(PMCs)的介绍。
所有的性能监控产品如果展示 “%CPU”,都应该同时展示 PMC 指标用于解释其真实意义,不要误导用户。比如,可以把 “%CPU” 和 “IPC” 一起放,或者说指令执行消耗周期和 stalled 周期。有这些指标之后,开发者和操作者就能够知道该如何更好地对应用和系统进行调优。
▲
END