1.算法仿真效果 matlab2022a仿真结果如下:

1.jpeg

2.算法涉及理论知识概要 毫米波通信作为第五代移动通信(5G)和未来通信系统的重要技术,能够提供更高的数据传输速率和更大的系统容量。然而,毫米波通信在传输过程中容易受到路径损耗和大气衰减的影响,因此需要采用有效的波束形成算法来提高信号质量。混合波束形成技术结合了射频(RF)和基带(BB)波束形成的优点,能够有效地抵消信道损耗。

2.png

实现过程

信道估计:在实际系统中,信道信息通常是未知的,因此需要进行信道估计。可以通过发送已知的训练序列,并通过接收到的信号估计RF和BB信道矩阵。

RF权重计算:利用估计得到的RF信道矩阵,计算RF权重向量$\mathbf{w}_r$。可以采用GMD算法选择与信道向量$\mathbf{h}_r$成正比的权重向量。

BB权重计算:利用估计得到的BB信道矩阵,计算BB权重向量$\mathbf{w}_b$。同样,可以采用GMD算法选择与信道向量$\mathbf{h}_b$成正比的权重向量。

信号传输:将发送的信号$\mathbf{x}$通过RF和BB权重向量进行波束形成,得到最终的传输信号$\hat{x}$。

3.MATLAB核心程序

            GH          = G';UH=U';
            G_1         = GH(1:Nsym,:);
            yc_svd      = UH(1:Nsym,:)*yo_svd;
            yc_gmd      = G_1*yo_gmd;
                    
            W_hysvd     = Wbb(:,:,jc)'*W_somp';
            yc_somp_svd = sqrt(Nsym/Nrf)*W_hysvd*yo_hysvd;
            
            W_hygmd     = G_SOMP'*W_somp';
            yc_somp_gmd = sqrt(Nsym/Nrf)*W_hygmd*yo_hygmd;
            
            
            %SVD解码
            tmp1      = func_VBLAST_decoder(yc_svd,Nsym,S(:,1:Nsym));
            msg_svd   = func_deQAM16(tmp1);
            
            tmp2      = func_VBLAST_decoder(yc_somp_svd,Nsym,S(:,1:Nsym));
            msg_hysvd = func_deQAM16(tmp2);
 
            %GMD-SIC解码
            tmp3      = func_VBLAST_decoder(yc_gmd,Nsym,M(:,1:Nsym));
            msg_gmd   = func_deQAM16(tmp3);
 
            tmp4      = func_VBLAST_decoder(yc_somp_gmd,Nsym,M2);
            msg_hygmd = func_deQAM16(tmp4);
            
 
            %错误计数
            cnt_svd   = cnt_svd + sum(msg1~= msg_svd);         
            cnt_hygmd = cnt_hygmd + sum(msg1~= msg_hysvd);                
            cnt_gmd   = cnt_gmd + sum(msg1~= msg_gmd);
            cnt_hysvd = cnt_hysvd + sum(msg1~= msg_hygmd);
           
        end
 
    end
    err_svd(ij)   = cnt_svd/N_tbits;
    err_gmd(ij)   = cnt_gmd/N_tbits;
    err_hysvd(ij) = cnt_hysvd/N_tbits;
    err_hygmd(ij) = cnt_hygmd/N_tbits;
end
 
figure;
semilogy(SNRss,smooth(err_svd),'-bs',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.0,0.0]);
hold on
semilogy(SNRss,smooth( err_hygmd),'-mo',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.5,0.9,0.0]);
hold on
semilogy(SNRss,smooth(err_gmd),'-b^',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.2,0.9,0.5]);
hold on
semilogy(SNRss,smooth( err_hysvd),'-r>',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.9,0.0]);
hold on
 
xlabel('SNR (dB)')
ylabel('BER')
legend('全数字SVD','混合SVD','全数字GMD','混合GMD');
grid on