1.算法仿真效果 本文是之前写的文章

基于FPGA的QPSK调制解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR_fpga qpsk-CSDN博客

的硬件片内测试版本。

系统在仿真版本基础上增加了ila在线数据采集模块,vio在线SNR设置模块,数据源模块。

硬件ila测试结果如下:(完整代码运行后无水印):

vio设置SNR=5db

1.jpeg

vio设置SNR=10db

2.jpeg

vio设置SNR=15db

3.jpeg

硬件测试操作步骤可参考程序配套的操作视频。

2.算法涉及理论知识概要 QPSK是一种数字调制方式,它将两个二进制比特映射到一个符号上,使得每个符号代表四种可能的相位状态。因此,QPSK调制解调系统可以实现更高的传输速率和更高的频谱效率。基于FPGA的QPSK调制解调系统通常由以下几个模块组成:数据生成模块:生成要传输的二进制数据流。

QPSK调制模块:将二进制数据流转换为符号序列,并将每个符号映射到特定的相位状态。

QPSK解调模块:将接收到的符号序列解调为二进制数据流。

下面将详细介绍每个模块的原理和实现方法。

2.1QPSK调制模块 QPSK调制模块将二进制数据流转换为符号序列,并将每个符号映射到特定的相位状态。QPSK调制使用四个相位状态,分别为0度、90度、180度和270度。在QPSK调制中,每个符号代表两个比特,因此,输入二进制数据流的速率必须是符号速率的两倍。

   QPSK调制模块通常使用带有正弦和余弦输出的正交调制器(I/Q调制器)来实现。在I/Q调制器中,输入信号被分成两路,一路被称为“正交(I)路”,另一路被称为“正交(Q)路”。每个输入符号被映射到一个特定的正交信号,然后通过合成器将两个信号相加,形成QPSK调制信号。

4.png

2.2 QPSK解调模块 QPSK解调模块将接收到的符号序列解调为二进制数据流。解调模块使用相干解调器来实现,相干解调器可以将接收到的信号分解成两个正交分量,然后将它们与本地正交信号相乘,得到原始的QPSK符号。解调器的输出是一个复数,需要进行幅值解调和相位解调才能得到原始的二进制数据流。

5.png

基于FPGA的QPSK调制解调系统的开发过程。

   首先需要选择适合的FPGA平台和开发工具。常用的FPGA平台有Xilinx和Altera,开发工具包括Vivado,以及Altera Quartus。选择FPGA平台和开发工具需要考虑系统的要求和开发人员的经验。

   系统设计包括确定系统的功能、模块划分和接口设计。在QPSK调制解调系统中,需要确定每个模块的功能和接口,并确定数据流的方向和速率。在设计过程中,需要考虑系统的性能、资源占用和延迟等因素。

   模块实现是基于FPGA的QPSK调制解调系统开发的核心部分。在模块实现过程中,需要使用硬件描述语言(HDL)编写代码,并使用仿真工具进行验证。常用的HDL语言有VHDL和Verilog,仿真工具包括ModelSim和ISE Simulator。

   基于FPGA的QPSK调制解调系统是一种高效、可靠的数字通信系统。通过使用FPGA平台和硬件描述语言,可以实现高性能、低延迟、低功耗的QPSK调制解调系统。在开发过程中,需要考虑系统的功能、性能、资源占用和延迟等因素。通过系统测试,可以确保系统的正确性和可靠性。

3.Verilog核心程序

//
// Company: 
// Engineer: 
// 
// Create Date: 2024/11/04 19:54:30
// Design Name: 
// Module Name: tops_hdw
// Project Name: 
// Target Devices: 
// Tool Versions: 
// Description: 
// 
// Dependencies: 
// 
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
// 
//
 
 
module tops_hdw(
 
input i_clk,
input i_rst,
output reg [3:0] led
);
    
 
wire o_msgI;
wire o_msgQ;
//产生模拟测试数据
signal signal_u(
.i_clk (i_clk),
.i_rst (~i_rst),
.o_bitsI(o_msgI),
.o_bitsQ(o_msgQ)
);
 
//设置SNR
wire signed[7:0]o_SNR;
vio_0 your_instance_name (
  .clk(i_clk),                // input wire clk
  .probe_out0(o_SNR)  // output wire [7 : 0] probe_out0
);
 
wire signed[15:0]o_Ifir_T;
wire signed[15:0]o_Qfir_T;
wire signed[31:0]o_mod_T;
wire signed[15:0]o_Nmod_T;
wire  signed[31:0]o_modc_R;
wire  signed[31:0]o_mods_R;
wire signed[31:0]o_Ifir_R;
wire signed[31:0]o_Qfir_R;
wire signed[31:0]o_error_num;
wire signed[31:0]o_total_num; 
wire [1:0]o_Irec; 
wire [1:0]o_Qrec;   
wire errflag;
QPSK_tops QPSK_tops_u(
.i_clk  (i_clk),
.i_rst  (~i_rst),
.i_Ibits(o_msgI),
.i_Qbits(o_msgQ),
.i_SNR  (o_SNR),
.o_Ifir (o_Ifir_T),
.o_Qfir (o_Qfir_T),
.o_mod_T(o_mod_T),
.o_Nmod_T(o_Nmod_T),
.o_modc (o_modc_R),
.o_mods (o_mods_R),
.o_rIfir (o_Ifir_R),
.o_rQfir (o_Qfir_R),
.o_error_num (o_error_num),
.o_total_num (o_total_num),
.o_Irec(o_Irec),
.o_Qrec(o_Qrec),
.o_flag(errflag)   
);
 
 
 
 
//ila篇内测试分析模块
ila_0 ila_u (
	.clk(i_clk), // input wire clk
	.probe0({ 
	        o_msgI,o_msgQ,o_SNR,o_Ifir_T[15:6],o_Qfir_T[15:6],//30
	        o_Nmod_T,o_modc_R[27:12],o_mods_R[27:12],o_Ifir_R[27:12],o_Qfir_R[27:12],//75
	        o_error_num,o_total_num,errflag,//65
            o_Irec,o_Qrec//4
	         })
	);	
 
 
 
 
endmodule

```


4.开发板使用说明和如何移植不同的开发板
注意:硬件片内测试是指发射接收均在一个板子内完成,因此不需要定时同步模块。

在本课题中,使用的开发板是:

![6.png](https://s2.51cto.com/images/blog/front/202412/7294693294207124b56023c200a8dbcb235248.png?x-oss-process=image/watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_30,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=)

如果你的开发板和我的不一样,可以参考代码包中的程序移植方法进行移植:

![7.png](https://s2.51cto.com/images/blog/front/202412/0246ebb2239117e3918529f82e24ca2ffc6043.png?x-oss-process=image/watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_30,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=)