Spark练习之Transformation操作开发
一、map:将集合中的每个元素乘以2
1.1 Java
/**
* map算子:将集合中的每一个元素都乘以2
*/
private static void map() {
//创建SparkConf
SparkConf conf = new SparkConf()
.setAppName("map")
.setMaster("local");
//创建JavaSparkContext
JavaSparkContext sc = new JavaSparkContext(conf);
//构造集合
List<Integer> numbers = Arrays.asList(1, 2, 3, 4, 5);
//并行化集合,创建初始RDD
JavaRDD<Integer> numberRDD = sc.parallelize(numbers);
//使用map算子,将集合中的每个元素都乘以2
//map算子,是对任何类型的RDD,都可以调用的
//在Java中,map算子接收的参数时Function对象
//创建的Function对象,一定会让你设置第二个泛型参数,这个泛型参数,就是返回的新元素的类型
//同时call()方法的返回类型,也必须与第二个泛型类型同步
//在call()方法内部,就可以对原始RDD中的每一个元素进行各种处理和计算,并返回一个新的元素
//所有新的元素就会组成一个新的RDD
JavaRDD<Integer> multipleNUmberRDD = numberRDD.map(new Function<Integer, Integer>() {
private static final long serivalVersionUID = 1L;
//传入call方法的,是1,2,3,4,5
//返回的就是2,4,6,8,10
@Override
public Integer call(Integer integer) throws Exception {
return integer * 2;
}
});
//打印新的RDD
multipleNUmberRDD.foreach(new VoidFunction<Integer>() {
private static final long serivalVersionUID = 1L;
@Override
public void call(Integer integer) throws Exception {
System.out.println(integer);
}
});
//关闭JavaSparkContext
sc.close();
}
1.2 Scala
def map(): Unit = {
val conf = new SparkConf().setAppName("map").setMaster("local")
val sc = new SparkContext(conf)
val numbers = Array(1, 2, 3, 4, 5)
val numberRDD = sc.parallelize(numbers, 1)
val multipleNumberRDD = numberRDD.map(num => num * 2)
multipleNumberRDD.foreach(num => println(num))
}
二、filter:过滤出集合中的偶数
2.1 Java
/**
* filter算子:过滤集合中的偶数
*/
private static void filter() {
//创建SparkConf
SparkConf conf = new SparkConf()
.setAppName("map")
.setMaster("local");
//创建JavaSparkContext
JavaSparkContext sc = new JavaSparkContext(conf);
//构造集合
List<Integer> numbers = Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);
//并行化集合,创建初始RDD
JavaRDD<Integer> numberRDD = sc.parallelize(numbers);
//对初始化RDD执行filter算子,过滤出其中的偶数
//filter算子操作,传入的也是Function,其他的使用注意点,和map是一样的
//但是,唯一的不同,就是call()方法的返回类型是Boolean
//每一个初始RDD中的元素,都会传入call()方法,此时你可以执行各种自定义的计算逻辑
//来判断这个元素是否是你想要的
//如果想在新的RDD中保留这个元素,那么就返回true,否则,返回false
JavaRDD<Integer> evenNumberRDD = numberRDD.filter(new Function<Integer, Boolean>() {
private static final long serivalVersionUID = 1L;
//传入call方法的,是1,2,3,4,5
//返回的就是2,4,6,8,10
@Override
public Boolean call(Integer integer) throws Exception {
return integer % 2 == 0;
}
});
//打印新的RDD
evenNumberRDD.foreach(new VoidFunction<Integer>() {
private static final long serivalVersionUID = 1L;
@Override
public void call(Integer integer) throws Exception {
System.out.println(integer);
}
});
//关闭JavaSparkContext
sc.close();
}
2.2 Scala
def filter(): Unit = {
val conf = new SparkConf().setAppName("filter").setMaster("local")
val sc = new SparkContext(conf)
val numbers = Array(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
val numberRDD = sc.parallelize(numbers, 1)
val multipleNumberRDD = numberRDD.filter(num => num % 2 == 0)
multipleNumberRDD.foreach(num => println(num))
}
三、flatMap:将行拆分为单词
3.1 Java
/**
* flatMap算子:过滤集合中的偶数
*/
private static void flatMap() {
//创建SparkConf
SparkConf conf = new SparkConf()
.setAppName("flatMap")
.setMaster("local");
//创建JavaSparkContext
JavaSparkContext sc = new JavaSparkContext(conf);
//构造集合
List<String> lineList = Arrays.asList("hello you", "hello me", "hello world");
//并行化集合,创建初始RDD
JavaRDD<String> lines = sc.parallelize(lineList);
//对初始化RDD执行flatMap算子,将每一行文本,拆分为多个单词
//flatMap算子,在Java中,接收的参数的FlagMapFunction
//需要自定义FlatMapFunction的第二个泛型类型,即代表了返回的新元素的类型
//call()方法,返回的类型,不是U,而是Iterable<U>,这里的U也与第二个泛型类型相同
//flatMap其实就是,接收原始RDD中的每个元素,并进行各种逻辑的计算和处理,返回可以返回多个元素
//多个元素,即封装在Iterator集合中,可以使用ArrayList等集合
JavaRDD<String> words = lines.flatMap(new FlatMapFunction<String, String>() {
private static final long serivalVersionUID = 1L;
@Override
public Iterator<String> call(String s) throws Exception {
return (Iterator<String>) Arrays.asList(s.split(" "));
}
});
//打印新的RDD
words.foreach(new VoidFunction<String>() {
private static final long serivalVersionUID = 1L;
@Override
public void call(String t) throws Exception {
System.out.println(t);
}
});
//关闭JavaSparkContext
sc.close();
}
3.2 Scala
def flatMap(): Unit = {
val conf = new SparkConf().setAppName("flatMap").setMaster("local")
val sc = new SparkContext(conf)
val lineArray = Array("hello you", "hello me", "hello world")
val lines = sc.parallelize(lineArray, 1)
val words = lines.flatMap(line => line.split(" "))
words.foreach(word => println(word))
}
四、groupByKey:将每个班级的成绩进行分组
4.1 Java
/**
* groupNyKey算子:按照班级对成绩进行分组
*/
private static void groupByKey() {
//创建SparkConf
SparkConf conf = new SparkConf()
.setAppName("groupByKey")
.setMaster("local");
//创建JavaSparkContext
JavaSparkContext sc = new JavaSparkContext(conf);
//构造集合
List<Tuple2<String, Integer>> scoresList = Arrays.asList(
new Tuple2<>("class1", 80),
new Tuple2<>("class2", 88),
new Tuple2<>("class1", 80),
new Tuple2<>("class2", 90));
//并行化集合,创建JavaPairRDD
JavaPairRDD<String, Integer> scores = sc.<String, Integer>parallelizePairs(scoresList);
//针对Scores RDD,执行groupByKey算子,对每个班级的成绩进行分组
//groupByKey算子,返回的还是JavaPairRDD
//但是,JavaPairRDD的第一个泛型类型不变,第二个泛型类型会变成Iterable这种集合类型
//也就是说,按照了Key进行分组,每个key可能都会有多个value,此时多个value聚合成了Iterable
//那么接下来,就可以通过groupedScores这种JavaPairRDD处理某个分组内的数据
JavaPairRDD<String, Iterable<Integer>> groupEdScores = scores.groupByKey();
//打印groupedScores RDD
groupEdScores.foreach(new VoidFunction<Tuple2<String, Iterable<Integer>>>() {
private static final long serivalVersionUID = 1L;
//对每个key,都会将其value,依次传入call方法
//从而聚合出每个key对应的一个value
//然后,将每个key对应的一个value,组合成一个Tuple2,作为新RDD的元素
@Override
public void call(Tuple2<String, Iterable<Integer>> stringIterableTuple2) throws Exception {
System.out.println("class:" + stringIterableTuple2._1);
Iterator<Integer> ite = stringIterableTuple2._2.iterator();
while (ite.hasNext()) {
System.out.println(ite.next());
}
System.out.println("====================================");
}
});
//关闭JavaSparkContext
sc.close();
}
2.2 Scala
def groupByKey(): Unit = {
val conf = new SparkConf().setAppName("groupByKey").setMaster("local")
val sc = new SparkContext(conf)
val scoreList = Array(new Tuple2[String, Integer]("class1", 80),
new Tuple2[String, Integer]("class2", 88),
new Tuple2[String, Integer]("class1", 80),
new Tuple2[String, Integer]("class2", 90))
val scores = sc.parallelize(scoreList, 1)
val groupedScores = scores.groupByKey()
groupedScores.foreach(
score => {
println(score._1)
score._2.foreach(singleScore => println(singleScore))
println("===========")
}
)
}
五、reduceByKey:统计每个班级的总分
5.1 Java
/**
* reduceNyKey算子:统计每个班级的总分
*/
private static void reduceNyKey() {
//创建SparkConf
SparkConf conf = new SparkConf()
.setAppName("reduceNyKey")
.setMaster("local");
//创建JavaSparkContext
JavaSparkContext sc = new JavaSparkContext(conf);
//构造集合
List<Tuple2<String, Integer>> scoresList = Arrays.asList(
new Tuple2<>("class1", 80),
new Tuple2<>("class2", 88),
new Tuple2<>("class1", 80),
new Tuple2<>("class2", 90));
//并行化集合,创建JavaPairRDD
JavaPairRDD<String, Integer> scores = sc.<String, Integer>parallelizePairs(scoresList);
//针对Scores RDD,执行reduceByKey算子
//reduceByKey,接收的参数时Function2类型,它有三个泛型参数,实际上代表了3个值
//第一个泛型类型和第二个泛型类型,代表了原始RDD中的元素的value的类型
//因此对每个key进行reduce,都会依次将第一个、第二个value传入,将值再与第三个value传入
//因此此处,会自动定义两个泛型类型,代表call()方法的两个传入参数的类型
//第三个泛型类型,代表了每次reduce操作返回的值的类型,默认也是与原始RDD的value类型相同的
//reduceByKey算子返回的RDD,还是JavaPairRDD<key,value>
JavaPairRDD<String, Integer> totalScores = scores.reduceByKey(new Function2<Integer, Integer, Integer>() {
private static final long serivalVersionUID = 1L;
@Override
public Integer call(Integer v1, Integer v2) throws Exception {
return v1 + v2;
}
});
//打印totalScore RDD
//打印groupedScores RDD
totalScores.foreach(new VoidFunction<Tuple2<String, Integer>>() {
private static final long serivalVersionUID = 1L;
@Override
public void call(Tuple2<String, Integer> t) throws Exception {
System.out.println(t._1 + ":" + t._2);
}
});
//关闭JavaSparkContext
sc.close();
}
5.2 Scala
def reduceByKey(): Unit = {
val conf = new SparkConf().setAppName("reduceByKey").setMaster("local")
val sc = new SparkContext(conf)
val scoreList = Array(new Tuple2[String, Integer]("class1", 80),
new Tuple2[String, Integer]("class2", 88),
new Tuple2[String, Integer]("class1", 80),
new Tuple2[String, Integer]("class2", 90))
val scores = sc.parallelize(scoreList, 1)
val totalScores = scores.reduceByKey(_ + _)
totalScores.foreach(classScore => println(classScore._1 + ":" + classScore._2))
}
六、sortByKey:将学生分数进行排序
6.1 Java
/**
* sortByKey算子:按照学生分数进行排序
*/
private static void sortByKey() {
//创建SparkConf
SparkConf conf = new SparkConf()
.setAppName("sortByKey")
.setMaster("local");
//创建JavaSparkContext
JavaSparkContext sc = new JavaSparkContext(conf);
//构造集合
List<Tuple2<Integer, String>> scoresList = Arrays.asList(
new Tuple2<>(65, "leo"),
new Tuple2<>(60, "tom"),
new Tuple2<>(90, "marry"),
new Tuple2<>(88, "jack"));
//并行化集合,创建JavaPairRDD
JavaPairRDD<Integer, String> scores = sc.<Integer, String>parallelizePairs(scoresList);
//对scoreRDD执行sortByKey算子
//sortByKey其实就是根据key进行排序,可以手动指定升序,或者降序
//返回的,还是JavaPairRDD,其中的元素内容和原始的RDD一样
//只是RDD中的元素顺序不同了
JavaPairRDD<Integer, String> sortedScored = scores.sortByKey();
//打印sortedScored RDD
sortedScored.foreach(new VoidFunction<Tuple2<Integer, String>>() {
private static final long serivalVersionUID = 1L;
@Override
public void call(Tuple2<Integer, String> t) throws Exception {
System.out.println(t._1 + ":" + t._2);
}
});
//关闭JavaSparkContext
sc.close();
}
6.2 Scala
def sortByKey(): Unit = {
val conf = new SparkConf().setAppName("sortByKey").setMaster("local")
val sc = new SparkContext(conf)
val scoreList = Array(new Tuple2[Integer, String](90, "cat"),
new Tuple2[Integer, String](80, "leo"),
new Tuple2[Integer, String](80, "opp"),
new Tuple2[Integer, String](55, "lll"))
val scores = sc.parallelize(scoreList, 1)
val totalScores = scores.sortByKey()
totalScores.foreach(studentScore => println(studentScore._1 + ":" + studentScore._2))
}
七、join:打印每个学生的成绩
7.1 Java
/**
* join算子:打印学生成绩
*/
private static void join() {
//创建SparkConf
SparkConf conf = new SparkConf()
.setAppName("join")
.setMaster("local");
//创建JavaSparkContext
JavaSparkContext sc = new JavaSparkContext(conf);
//学生集合
List<Tuple2<Integer, String>> studentList = Arrays.asList(
new Tuple2<>(1, "leo"),
new Tuple2<>(2, "tom"),
new Tuple2<>(3, "marry"),
new Tuple2<>(4, "jack"));
//分数集合
List<Tuple2<Integer, Integer>> scoreList = Arrays.asList(
new Tuple2<>(1, 100),
new Tuple2<>(2, 80),
new Tuple2<>(3, 50),
new Tuple2<>(4, 20));
//并行化两个RDD
JavaPairRDD<Integer, String> student = sc.<Integer, String>parallelizePairs(studentList);
JavaPairRDD<Integer, Integer> scores = sc.<Integer, Integer>parallelizePairs(scoreList);
//使用join算子关联两个RDD
//join以后,还是会根据key进行join,并返回JavaPairRDD
//但是JavaPairRDD的第一个泛型类型,之前两个JavaPairRDD的key类型,因为是通过key进行join的
//第二个泛型类型,是Tuple2<v1,v2>的类型,Tuple2的两个反省分别为原始RDD的value的类型
//join,就返回的RDD的每一个元素,就是通过Key join上的一个pair
//比如有(1,1)(1,2)(1,3)的一个RDD和(1,4)(2,1)(2.2)的一个RDD
//join以后,实际上会得到(1,(1,4))(1,(2,4))(1,(3,4))
JavaPairRDD<Integer, Tuple2<String, Integer>> studentScores = student.<Integer>join(scores);
//打印sortedScored RDD
studentScores.foreach(new VoidFunction<Tuple2<Integer, Tuple2<String, Integer>>>() {
@Override
public void call(Tuple2<Integer, Tuple2<String, Integer>> t) throws Exception {
System.out.println("student id:" + t._1);
System.out.println("student name:" + t._2._1);
System.out.println("student score:" + t._2._2);
System.out.println("==============");
}
});
//关闭JavaSparkContext
sc.close();
}
7.2 Scala
def join(): Unit = {
val conf = new SparkConf().setAppName("join").setMaster("local")
val sc = new SparkContext(conf)
//学生集合
val studentList = Array(
new Tuple2[Integer, String](1, "leo"),
new Tuple2[Integer, String](2, "tom"),
new Tuple2[Integer, String](3, "marry"))
//分数集合
val scoreList = Array(
new Tuple2[Integer, Integer](1, 100), new Tuple2[Integer, Integer](2, 80),
new Tuple2[Integer, Integer](3, 50), new Tuple2[Integer, Integer](1, 70),
new Tuple2[Integer, Integer](2, 10), new Tuple2[Integer, Integer](3, 40))
val student = sc.parallelize(studentList)
val scores = sc.parallelize(scoreList)
val studentScores = student.join(scores)
studentScores.foreach(studentScore => println({
System.out.println("student id:" + studentScore._1)
System.out.println("student name:" + studentScore._2._1)
System.out.println("student score:" + studentScore._2._2)
System.out.println("==============")
}))
}
八、cogroup:打印每个学生的成绩
8.1 Java
/**
* cogroup算子:打印学生成绩
*/
private static void cogroup() {
//创建SparkConf
SparkConf conf = new SparkConf()
.setAppName("cogroup")
.setMaster("local");
//创建JavaSparkContext
JavaSparkContext sc = new JavaSparkContext(conf);
//学生集合
List<Tuple2<Integer, String>> studentList = Arrays.asList(
new Tuple2<>(1, "leo"),
new Tuple2<>(2, "tom"),
new Tuple2<>(3, "marry"));
//分数集合
List<Tuple2<Integer, Integer>> scoreList = Arrays.asList(
new Tuple2<>(1, 100),
new Tuple2<>(2, 80),
new Tuple2<>(3, 50),
new Tuple2<>(1, 70),
new Tuple2<>(2, 10),
new Tuple2<>(3, 40));
//并行化两个RDD
JavaPairRDD<Integer, String> student = sc.<Integer, String>parallelizePairs(studentList);
JavaPairRDD<Integer, Integer> scores = sc.<Integer, Integer>parallelizePairs(scoreList);
//cogroup与join不同
//相当于是,一个key join上的所有value,都给放到一个Iterable里面去了
JavaPairRDD<Integer, Tuple2<Iterable<String>, Iterable<Integer>>> studentScores = student.<Integer>cogroup(scores);
//打印sortedScored RDD
studentScores.foreach(new VoidFunction<Tuple2<Integer, Tuple2<Iterable<String>, Iterable<Integer>>>>() {
@Override
public void call(Tuple2<Integer, Tuple2<Iterable<String>, Iterable<Integer>>> t) throws Exception {
System.out.println("student id:" + t._1);
System.out.println("student name:" + t._2._1);
System.out.println("student score:" + t._2._2);
System.out.println("==============");
}
});
//关闭JavaSparkContext
sc.close();
}
九、main函数
9.1 Java
public static void main(String[] args) {
//map();
//filter();
//flatMap();
//groupByKey();
//reduceNyKey();
//sortByKey();
//join();
cogroup();
}
9.2 Scala
def main(args: Array[String]) {
//map()
//filter()
//flatMap()
//groupByKey()
//reduceByKey()
//sortByKey()
join()
}