【故障处理】队列等待之enq: TX - row lock contention

1  BLOG文档结构图

【故障处理】队列等待之enq: TX - row lock contention_sql语句 

2  前言部分

2.1  导读和注意事项

各位技术爱好者,看完本文后,你可以掌握如下的技能,也可以学到一些其它你所不知道的知识,~O(∩_∩)O~:

① enq: TX - row lock contention等待事件的解决

② 一般等待事件的解决办法

③ 队列等待的基本知识

④ ADDM的使用

⑤ 如何获取历史执行计划

⑥ 查询绑定变量的具体值

⑦ 很多有用的查询性能的SQL语句

  Tips:

① 本文在ITpub(http://blog.itpub.net/26736162)、博客园(http://www.cnblogs.com/lhrbest)和微信公众号(xiaomaimiaolhr)有同步更新

② 文章中用到的所有代码,相关软件,相关资料请前往小麦苗的云盘下载(http://blog.itpub.net/26736162/viewspace-1624453/

③ 若文章代码格式有错乱,推荐使用搜狗、360或QQ浏览器,也可以下载pdf格式的文档来查看,pdf文档下载地址:http://blog.itpub.net/26736162/viewspace-1624453/,另外itpub格式显示有问题,可以去博客园地址阅读

④ 本篇BLOG中命令的输出部分需要特别关注的地方我都用灰色背景和粉红色字体来表示,比如下边的例子中,thread 1的最大归档日志号为33,thread 2的最大归档日志号为43是需要特别关注的地方;而命令一般使用黄色背景和红色字体标注;对代码或代码输出部分的注释一般采用蓝色字体表示。

  List of Archived Logs in backup set 11

  Thrd Seq     Low SCN    Low Time            Next SCN   Next Time

  ---- ------- ---------- ------------------- ---------- ---------

  1    32      1621589    2015-05-29 11:09:52 1625242    2015-05-29 11:15:48

  1    33      1625242    2015-05-29 11:15:48 1625293    2015-05-29 11:15:58

  2    42      1613951    2015-05-29 10:41:18 1625245    2015-05-29 11:15:49

  2    43      1625245    2015-05-29 11:15:49 1625253    2015-05-29 11:15:53

 

[ZHLHRDB1:root]:/>lsvg -o

T_XDESK_APP1_vg

rootvg

[ZHLHRDB1:root]:/>

00:27:22 SQL> alter tablespace idxtbs read write;

 

====》2097152*512/1024/1024/1024=1G 

 

本文如有错误或不完善的地方请大家多多指正,ITPUB留言或QQ皆可,您的批评指正是我写作的最大动力。

 

 

3  故障分析及解决过程

 

3.1  故障环境介绍

 

项目

source db

db 类型

RAC

db version

11.2.0.4.0

db 存储

ASM

OS版本及kernel版本

AIX 64位 7.1.0.0

 

3.2  故障发生现象及报错信息

早上同事过来跟我说昨天有一套数据库做压力测试的时候,CPU利用率很高,他已经抓取当时的AWR,让我帮忙分析分析,下边我们来看看AWR中的数据:

【故障处理】队列等待之enq: TX - row lock contention_等待事件_02 

从AWR报告的头部可以分析得到,数据库为RAC库,11.2.0.4版本,AIX64位系统,有32颗CPU,共48G内存,收集了40分钟内的AWR报告,但是DB Time有15180分钟,约为15180/40=379倍,说明这段时间内系统的负载异常的大。

如果关注数据库的性能,那么当拿到一份AWR报告的时候,最想知道的第一件事情可能就是系统资源的利用情况了,而首当其冲的,就是CPU。而细分起来,CPU可能指的是

l OS级的User%, Sys%, Idle%

l DB所占OS CPU资源的Busy%

l DB CPU又可以分为前台所消耗的CPU和后台所消耗的CPU

我们分析以下主机CPU的情况:

【故障处理】队列等待之enq: TX - row lock contention_sed_03 

分析上面的主机图片,我们可以得出下面的结论:

v OS 级的 User%,Sys%,Idle%:

OS 级的%User 为 2.9,%Sys 为 2.3,%Idle 为 94.8,所以%Busy应该是 100-94.8=5.2。

v DB 所占 OS CPU 资源的 Busy%

DB 占了 OS CPU 资源的 2.2,%Busy CPU 则可以通过上面的数据得到:

%Busy CPU = %Total CPU/(%Busy) * 100 = 2.2/5.2* 100 = 42.3,和报告的42.2相吻合。

接下来我们看看Load Profile部分:

【故障处理】队列等待之enq: TX - row lock contention_sql语句_04 

可以看到,每秒的事务数大约为358,非常大,接下来看看等待事件:

【故障处理】队列等待之enq: TX - row lock contention_数据库_05 

其它的项目就不列出了,从等待事件中可以很明显的看出enq: TX - row lock contention这个等待事件异常。Top 10 Foreground Events by Total Wait Time这个部分也是AWR报告中非常重要的部分,从这里可以看出等待时间在前10位的是什么事件,基本上就可以判断出性能瓶颈在什么地方。通常,在没有问题的数据库中,CPU time总是列在第一个。在这里,enq: TX - row lock contention等待了 3,813,533次,等待时间为855,777秒,平均等待时间为855777/3813533=224毫秒,占DB Time的94%,等待类别为Application上的等待问题。

3.3  故障分析

根据AWR报告的内容,我们知道只要解决了enq: TX - row lock contention这个等待事件即可解决问题。那么我们首先来了解一些关于这个等待事件的知识。

===============================================================================

SELECT * FROM V$EVENT_NAME WHERE NAME = 'enq: TX - row lock contention';

【故障处理】队列等待之enq: TX - row lock contention_sql语句_06 

SELECT * FROM V$LOCK_TYPE D WHERE D.TYPE IN ('TX');

【故障处理】队列等待之enq: TX - row lock contention_等待事件_07 

SELECT D.EQ_NAME, D.EQ_TYPE, D.REQ_REASON, D.REQ_DESCRIPTION

  FROM V$ENQUEUE_STATISTICS D

 WHERE D.EQ_TYPE IN ('TX')

 AND D.REQ_REASON='row lock contention';

【故障处理】队列等待之enq: TX - row lock contention_sql_08 

等待事件enq: TX - row lock contention中的enq是enquence的简写。enquence是协调访问数据库资源的内部锁。

所有以“enq:”打头的等待事件都表示这个会话正在等待另一个会话持有的内部锁释放,它的名称格式是enq:enqueue_type - related_details。这里的enqueue_type是TX,related_details是row lock contention。数据库动态性能视图v$event_name提供所有以“enq:”开头的等待事件的列表。

Oracle 的enqueue 包含以下模式:

模式代码

解释

1

Null mode

2

Sub-Share

3

Sub-Exclusive

4

Share

5

Share/Sub-Exclusive

6

Exclusive

 

enq: TX - row lock contention 通常是Application级别的问题。通常情况下,Oracle数据库的等待事件enq: TX - row lock contention会在下列三种情况下会出现。

(一)第一种情况,是真正的业务逻辑上的行锁冲突,如一条记录被多个人同时修改。这种锁对应的请求模式是6(Waits for TX in mode 6 :A 会话持有row level lock,B会话等待这个lock释放。)。不同的session更新或删除同一个记录。(This occurs when one application is updating or deleting a row that another session is also trying to update or delete. )

解决办法:持有锁的会话commit或者rollback。

(二)第二种情况,是唯一键冲突(In mode 4,唯一索引),如主键字段相同的多条记录同时插入。这种锁对应的请求模式是4。这也是应用逻辑问题。表上存在唯一索引,A会话插入一个值(未提交),B会话随后也插入同样的值;A会话提交后,enq: TX - row lock contention消失。

解决办法:持有锁的会话commit或者rollback。

(三)第三种情况,是bitmap索引的更新冲突(in mode 4 :bitmap),就是多个会话同时更新bitmap索引的同一个数据块。源于bitmap的特性:位图索引的一个键值,会指向多行记录,所以更新一行就会把该键值指向的所有行锁定。此时会话请求锁的对应的请求模式是4。bitmap索引的物理结构和普通索引一样,也是 B-tree 结构,但它存储的数据记录的逻辑结构为"key_value,start_rowid,end_rowid,bitmap"。

其内容类似这样:"‘8088’,00000000000,10000034441,1001000100001111000"

Bitmap是一个二进制,表示 START_ROWID 到 END_ROWID 的记录,1 表示等于 key_value即‘8088’的 ROWID 记录, 0 则表示不是这个记录。

解决办法:持有锁的会话commit或者rollback。

在了解bitmap索引的结构之后,我们就能理解同时插入多条记录到拥有bitmap索引的表时,就会同时更新bitmap索引中一个块中的记录,等于某一个记录被同时更新,自然就会出现行锁等待。插入并发量越大,等待越严重。

(四)其他原因

It could be a primary key problem;  a trigger firing attempting to insert, delete, or update a row; a problem with initrans; waiting for an index split to complete; problems with bitmap indexes;updating a row already updated by another session; or something else.

(https://forums.oracle.com/forums/thread.jspa?threadID=860488)

 

 

如果数据库一出现enq: TX - row lock contention等待,可以去看v$session和v$session_wait等视图。在v$session和v$session_wait中,如果看到的event列是enq: TX - row lock contention的,就表示这个会话正处于行锁等待。该等待事件的请求模式可以从v$session和v$session_wait的p1列中得到。

select sid,

       chr(bitand(p1, -16777216) / 16777215) ||

       chr(bitand(p1, 16711680) / 65535) "Name",

       (bitand(p1, 65535)) "Mode"

  from v$session_wait

 where event like 'enq%'; 

通过这个SQL可以将p1转换为易阅读的文字。

 

===============================================================================

有了以上的知识,我们知道,目前首先需要找到产生等待事件的类型进而来分析解决问题。

3.4  故障解决过程

根据AWR报告可以得到故障的时间是'2016-08-31 17:30:00'到'2016-08-31 18:15:00'之间。

我们查询出现问题时间段的ASH视图DBA_HIST_ACTIVE_SESS_HISTORY来找到我们需要的锁类型及SQL语句。

SELECT D.SQL_ID, COUNT(1)

  FROM DBA_HIST_ACTIVE_SESS_HISTORY D

 WHERE D.SAMPLE_TIME BETWEEN TO_DATE('2016-08-31 17:30:00', 'YYYY-MM-DD HH24:MI:SS') AND

       TO_DATE('2016-08-31 18:15:00', 'YYYY-MM-DD HH24:MI:SS')

   AND D.EVENT = 'enq: TX - row lock contention'

 GROUP BY D.SQL_ID; 

   【故障处理】队列等待之enq: TX - row lock contention_数据库_09

只有一条SQL语句,看来就是它了,我们来看看锁的类型:

 SELECT D.SQL_ID,CHR(BITAND(P1, -16777216) / 16777215) ||

        CHR(BITAND(P1, 16711680) / 65535) "Lock",

        BITAND(P1, 65535) "Mode", COUNT(1),COUNT(DISTINCT d.session_id )

  FROM DBA_HIST_ACTIVE_SESS_HISTORY D

 WHERE D.SAMPLE_TIME BETWEEN TO_DATE('2016-08-31 17:30:00', 'YYYY-MM-DD HH24:MI:SS') AND

       TO_DATE('2016-08-31 18:15:00', 'YYYY-MM-DD HH24:MI:SS')

   AND D.EVENT = 'enq: TX - row lock contention'

 GROUP BY D.SQL_ID,(CHR(BITAND(P1, -16777216) / 16777215) ||

        CHR(BITAND(P1, 16711680) / 65535)),(BITAND(P1, 65535));

【故障处理】队列等待之enq: TX - row lock contention_数据库_10 

看来约有556个会话等待该锁,锁为TX锁,模式为6,刚好是我们之前的分析的原因中的第一种(第一种情况,是真正的业务逻辑上的行锁冲突,如一条记录被多个人同时修改。这种锁对应的请求模式是6)。我们可以分析具体的对象是哪个:

 SELECT  D.current_obj#,

        D.current_file#,

        D.current_block#,

        D.current_row#,D.EVENT,

        D.P1TEXT,

        D.P1,

        D.P2TEXT,

        D.P2,

        CHR(BITAND(P1, -16777216) / 16777215) ||

        CHR(BITAND(P1, 16711680) / 65535) "Lock",

        BITAND(P1, 65535) "Mode",

        D.BLOCKING_SESSION,

        D.BLOCKING_SESSION_STATUS,

        D.BLOCKING_SESSION_SERIAL#,

        D.SQL_ID,

        TO_CHAR(D.SAMPLE_TIME, 'YYYYMMDDHH24MISS') SAMPLE_TIME

   FROM DBA_HIST_ACTIVE_SESS_HISTORY D

  WHERE D.SAMPLE_TIME BETWEEN TO_DATE('2016-08-31 17:30:00', 'YYYY-MM-DD HH24:MI:SS') AND

       TO_DATE('2016-08-31 18:15:00', 'YYYY-MM-DD HH24:MI:SS')

    AND D.EVENT = 'enq: TX - row lock contention'; 

【故障处理】队列等待之enq: TX - row lock contention_sql_11 

SELECT * FROM dba_objects D WHERE D.object_id=87620;

【故障处理】队列等待之enq: TX - row lock contention_等待事件_12 

可以看到等待的是一张表。

可以看到SQL_ID为1cmnjddakrqbv的SQL最多,我们查看具体SQL内容:

SELECT A.* FROM V$SQL A WHERE A.SQL_ID IN ('1cmnjddakrqbv') ;

【故障处理】队列等待之enq: TX - row lock contention_数据库_13 

SELECT A.SQL_TEXT,A.EXECUTIONS,A.MODULE FROM V$SQL A WHERE A.SQL_ID IN ('1cmnjddakrqbv');

【故障处理】队列等待之enq: TX - row lock contention_数据库_14 

可以看到,该SQL是JDBC的,也就是JAVA前台的语句,我们将SQL语句拷贝出来:

update organization o set o.quota_unused = o.quota_unused-:1,o.mod_date = systimestamp where o.quota_unused >= :2 and o.bank_id=:3 and o.pro_id=:4

SQL语句是一个UPDATE语句,我们查询其执行计划是否正确,是否有索引:

SELECT *

  FROM TABLE(DBMS_WORKLOAD_REPOSITORY.AWR_SQL_REPORT_HTML(L_DBID     => 3860591551,

                                                          L_INST_NUM => 1,

                                                          L_BID      => 1145,

                                                          L_EID      => 1148,

                                                          L_SQLID    => '1cmnjddakrqbv'));

【故障处理】队列等待之enq: TX - row lock contention_数据库_15 

拷贝到txt中另存为html即可以看到报告:

【故障处理】队列等待之enq: TX - row lock contention_数据库_16 

可以看到SQL走的是INDEX UNIQUE SCAN,说明表上不缺索引,设计上没有问题。这里简单点看历史执行计划也可以这样:SELECT * FROM TABLE(DBMS_XPLAN.DISPLAY_AWR(SQL_ID => '1cmnjddakrqbv' )) ;

【故障处理】队列等待之enq: TX - row lock contention_数据库_17 

我们继续查看该SQL的绑定变量的值具体是多少:

SELECT * FROM V$SQL_BIND_CAPTURE  A WHERE A.SQL_ID IN ('1cmnjddakrqbv') ; 

SELECT A.SQL_ID,A.NAME,A.POSITION,A.DATATYPE_STRING,A.VALUE_STRING FROM V$SQL_BIND_CAPTURE  A WHERE A.SQL_ID IN ('1cmnjddakrqbv') ;

【故障处理】队列等待之enq: TX - row lock contention_数据库_18 

这里准确点我们应该查询DBA_HIST_SQLBIND该视图,如下:

SELECT   A.sql_id,A.name,A.datatype_string,A.value_string,COUNT(1)

     FROM DBA_HIST_SQLBIND A

    WHERE A.SQL_ID IN ('1cmnjddakrqbv')

      AND A.SNAP_ID BETWEEN 1145 AND 1148  

GROUP BY A.sql_id,A.name,A.datatype_string,A.value_string

 ;  

【故障处理】队列等待之enq: TX - row lock contention_sql语句_19 

结果差不多。由此找到了产生等待的SQL语句,我们查询一下:

 SELECT * FROM CNSL.ORGANIZATION o WHERE O.QUOTA_UNUSED >= 1

     AND O.BANK_ID IN ( '17856'  , '05612' )

     AND O.PRO_ID = 'HSB201602';

【故障处理】队列等待之enq: TX - row lock contention_sed_20 

查询出来也就2行的数据,说明整个过程中,500多的会话就在更新这2条记录,那肯定会产生行锁等待的。

 

 3.4.1  ADDM的建议

最后突然想到了ADDM,于是做了个ADDM查询。

DECLARE

  TASK_NAME VARCHAR2(50) := 'HEALTH_CHECK_BY_LHR';

  TASK_DESC VARCHAR2(50) := 'HEALTH_CHECK_BY_LHR';

  TASK_ID   NUMBER;

BEGIN

  DBMS_ADVISOR.CREATE_TASK('ADDM', TASK_ID, TASK_NAME, TASK_DESC, NULL);

  DBMS_ADVISOR.SET_TASK_PARAMETER(TASK_NAME, 'START_SNAPSHOT', 1145);

  DBMS_ADVISOR.SET_TASK_PARAMETER(TASK_NAME, 'END_SNAPSHOT', 1148);

  DBMS_ADVISOR.SET_TASK_PARAMETER(TASK_NAME, 'INSTANCE', 1);

  DBMS_ADVISOR.SET_TASK_PARAMETER(TASK_NAME, 'DB_ID', 3860591551);

  DBMS_ADVISOR.EXECUTE_TASK(TASK_NAME);

EXCEPTION

  WHEN OTHERS THEN

    NULL;

END;

/

执行完成后ADDM报告就创建好了,然后我们用函数DBMS_ADVISOR.GET_TASK_REPORT来获取报告:

SELECT DBMS_ADVISOR.GET_TASK_REPORT('HEALTH_CHECK_BY_LHR', 'TEXT', 'ALL') ADDM_RESULTS

FROM DUAL;

【故障处理】队列等待之enq: TX - row lock contention_sed_21 

查看ADDM具体内容,重要的内容我用红色标注出来了:

          ADDM Report for Task 'HEALTH_CHECK_BY_LHR'

          ------------------------------------------

 

Analysis Period

---------------

AWR snapshot range from 1145 to 1148.

Time period starts at 31-AUG-16 05.33.52 PM

Time period ends at 31-AUG-16 06.14.36 PM

 

Analysis Target

---------------

Database 'ORACNSL' with DB ID 3860591551.

Database version 11.2.0.4.0.

ADDM performed an analysis of instance oraCNSL1, numbered 1 and hosted at

ZFCNSLDB1.

 

Activity During the Analysis Period

-----------------------------------

Total database time was 910831 seconds.

The average number of active sessions was 372.68.

 

Summary of Findings

-------------------

   Description                Active Sessions      Recommendations

                              Percent of Activity  

   -------------------------  -------------------  ---------------

1  Top SQL Statements         371.83 | 99.77       1

2  Row Lock Waits             350.15 | 93.96       1

3  Buffer Busy - Hot Objects  20.62 | 5.53         1

4  Buffer Busy - Hot Block    20.6 | 5.53          2

5  "Cluster" Wait Class       17.7 | 4.75          0

6  Global Cache Messaging     5.86 | 1.57          1

 

 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

 

 

          Findings and Recommendations

          ----------------------------

 

Finding 1: Top SQL Statements

Impact is 371.83 active sessions, 99.77% of total activity.

-----------------------------------------------------------

SQL statements consuming significant database time were found. These

statements offer a good opportunity for performance improvement.

 

   Recommendation 1: SQL Tuning

   Estimated benefit is 371.83 active sessions, 99.77% of total activity.

   ----------------------------------------------------------------------

   Action

      Investigate the UPDATE statement with SQL_ID "1cmnjddakrqbv" for

      possible performance improvements. You can supplement the information

      given here with an ASH report for this SQL_ID.

      Related Object

         SQL statement with SQL_ID 1cmnjddakrqbv.

         update organization o set o.quota_unused =

         o.quota_unused-:1,o.mod_date = systimestamp where o.quota_unused >=

         :2 and o.bank_id=:3 and o.pro_id=:4

   Rationale

      The SQL spent only 4% of its database time on CPU, I/O and Cluster

      waits. Therefore, the SQL Tuning Advisor is not applicable in this case.

      Look at performance data for the SQL to find potential improvements.

   Rationale

      Database time for this SQL was divided as follows: 100% for SQL

      execution, 0% for parsing, 0% for PL/SQL execution and 0% for Java

      execution.

   Rationale

      SQL statement with SQL_ID "1cmnjddakrqbv" was executed 377427 times and

      had an average elapsed time of 2.4 seconds.

   Rationale

      Waiting for event "enq: TX - row lock contention" in wait class

      "Application" accounted for 94% of the database time spent in processing

      the SQL statement with SQL_ID "1cmnjddakrqbv".

 

 

Finding 2: Row Lock Waits

Impact is 350.15 active sessions, 93.96% of total activity.

-----------------------------------------------------------

SQL statements were found waiting for row lock waits.

 

   Recommendation 1: Application Analysis

   Estimated benefit is 350.15 active sessions, 93.96% of total activity.

   ----------------------------------------------------------------------

   Action

      Significant row contention was detected in the TABLE "CNSL.ORGANIZATION"

      with object ID 87620. Trace the cause of row contention in the

      application logic using the given blocked SQL.

      Related Object

         Database object with ID 87620.

   Rationale

      The SQL statement with SQL_ID "1cmnjddakrqbv" was blocked on row locks.

      Related Object

         SQL statement with SQL_ID 1cmnjddakrqbv.

         update organization o set o.quota_unused =

         o.quota_unused-:1,o.mod_date = systimestamp where o.quota_unused >=

         :2 and o.bank_id=:3 and o.pro_id=:4

 

   Symptoms That Led to the Finding:

   ---------------------------------

      Wait class "Application" was consuming significant database time.

      Impact is 350.15 active sessions, 93.96% of total activity.

 

 

Finding 3: Buffer Busy - Hot Objects

Impact is 20.62 active sessions, 5.53% of total activity.

---------------------------------------------------------

Read and write contention on database blocks was consuming significant

database time.

 

   Recommendation 1: Schema Changes

   Estimated benefit is 20.6 active sessions, 5.53% of total activity.

   -------------------------------------------------------------------

   Action

      Consider rebuilding the TABLE "CNSL.ORGANIZATION" with object ID 87620

      using a higher value for PCTFREE.

      Related Object

         Database object with ID 87620.

 

   Symptoms That Led to the Finding:

   ---------------------------------

      Read and write contention on database blocks was consuming significant

      database time.

      Impact is 20.62 active sessions, 5.53% of total activity.

         Inter-instance messaging was consuming significant database time on

         this instance.

         Impact is 5.86 active sessions, 1.57% of total activity.

            Wait class "Cluster" was consuming significant database time.

            Impact is 17.7 active sessions, 4.75% of total activity.

 

 

Finding 4: Buffer Busy - Hot Block

Impact is 20.6 active sessions, 5.53% of total activity.

--------------------------------------------------------

A hot data block with concurrent read and write activity was found. The block

belongs to segment "CNSL.ORGANIZATION" and is block 171 in file 14.

 

   Recommendation 1: Application Analysis

   Estimated benefit is 20.6 active sessions, 5.53% of total activity.

   -------------------------------------------------------------------

   Action

      Investigate application logic to find the cause of high concurrent read

      and write activity to the data present in this block.

      Related Object

         Database block with object number 87620, file number 14 and block

         number 171.

 

   Recommendation 2: Schema Changes

   Estimated benefit is 20.6 active sessions, 5.53% of total activity.

   -------------------------------------------------------------------

   Action

      Consider rebuilding the TABLE "CNSL.ORGANIZATION" with object ID 87620

      using a higher value for PCTFREE.

      Related Object

         Database object with ID 87620.

 

   Symptoms That Led to the Finding:

   ---------------------------------

      Read and write contention on database blocks was consuming significant

      database time.

      Impact is 20.62 active sessions, 5.53% of total activity.

         Inter-instance messaging was consuming significant database time on

         this instance.

         Impact is 5.86 active sessions, 1.57% of total activity.

            Wait class "Cluster" was consuming significant database time.

            Impact is 17.7 active sessions, 4.75% of total activity.

 

 

Finding 5: "Cluster" Wait Class

Impact is 17.7 active sessions, 4.75% of total activity.

--------------------------------------------------------

Wait class "Cluster" was consuming significant database time.

 

   No recommendations are available.

 

 

Finding 6: Global Cache Messaging

Impact is 5.86 active sessions, 1.57% of total activity.

--------------------------------------------------------

Inter-instance messaging was consuming significant database time on this

instance.

 

   Recommendation 1: Application Analysis

   Estimated benefit is 5.86 active sessions, 1.57% of total activity.

   -------------------------------------------------------------------

   Action

      Look at the "Top SQL Statements" finding for SQL statements consuming

      significant time on Cluster waits. For example, the UPDATE statement

      with SQL_ID "1cmnjddakrqbv" is responsible for 100% of Cluster wait

      during the analysis period.

 

   Symptoms That Led to the Finding:

   ---------------------------------

      Wait class "Cluster" was consuming significant database time.

      Impact is 17.7 active sessions, 4.75% of total activity.

 

 

 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

 

          Additional Information

          ----------------------

 

Miscellaneous Information

-------------------------

Wait class "Commit" was not consuming significant database time.

Wait class "Concurrency" was not consuming significant database time.

Wait class "Configuration" was not consuming significant database time.

CPU was not a bottleneck for the instance.

Wait class "Network" was not consuming significant database time.

Wait class "User I/O" was not consuming significant database time.

The network latency of the cluster interconnect was within acceptable limits

of 1 milliseconds.

Session connect and disconnect calls were not consuming significant database

time.

Hard parsing of SQL statements was not consuming significant database time.

 

 

看来ADDM可以一针见血的找到系统存在的问题。