此书极好,值得借鉴学习,并且开源开放。Python在实现过程中,体现出来了非常强的优势,特别是结合Numpy来进行矩阵计算,有很多简化方法。这里将学习过程代码进行增编、添加后进行展示。
Python目前的缺点应该是缺乏一个像ImageWatch这样的工具,这将影响算法研究;另外Numpy的过度抽象,某种程度上也会造成障碍。
1、寻找指定色彩区域
Python的特色,在于Numpy的使用
import cv2
import numpy as np
src = cv2.imread( "e:/template/tiantan.jpg")
hsv = cv2.cvtColor(src,cv2.COLOR_BGR2HSV)
lower_blue = np.array([ 100, 43, 46])
upper_blue = np.array([ 124, 255, 255])
mask = cv2.inRange(hsv,lower_blue,upper_blue)
res = cv2.bitwise_and(src,src,mask=mask)
cv2.imshow( "hsv",hsv)
cv2.imshow( "mask",mask)
cv2.imshow( "res",res)
cv2.waitKey( 0)
2、warpperspective 透视变化的python实现
import cv2
import numpy as np
src = cv2.imread( "e:/template/steel03.jpg")
rows,cols,ch = src.shape
pts1 = np.float32([[ 122, 0],[ 814, 0],[ 22, 540],[ 910, 540]])
pts2 = np.float32([[ 0, 0],[ 960, 0],[ 0, 540],[ 960, 540]])
M = cv2.getPerspectiveTransform(pts1,pts2)
dst = cv2.warpPerspective(src,M,(cols,rows))
cv2.imshow( "src",dst)
cv2.waitKey( 0)
这里操作的核心,是一个np的矩阵。在C++中,使用Vector,可能会造成很多浪费。
3、自适应阈值
import cv2
import numpy as np
obj = cv2.imread( "e:/template/pig.jpg", 0)
ret,th1 = cv2.threshold(obj, 100, 255,cv2.THRESH_BINARY)
th2 = cv2.adaptiveThreshold(obj, 255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,cv2.THRESH_BINARY, 11, 2)
ret3,th3 = cv2.threshold(obj, 0, 255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
cv2.imshow( "th3",th3)
print(ret3)
cv2.waitKey()
当参数选择OTSU的时候,能够根据计算,自动算出下限。但是我认为这一点并没有什么特别的用途。
4、模糊处理
obj = cv2.imread( "e:/template/pig.jpg", 0)
blur= cv2.blur(obj,( 3, 3))
gaussBlur=cv2.GaussianBlur(obj,( 3, 3), 0)
median = cv2.medianBlur(obj, 5)
bilate = cv2.bilateralFilter(obj, 0.75, 0.75)
5、形态学变换
obj = cv2.imread( "e:/template/pig.jpg", 0)
opening = cv2.morphologyEx(obj,cv2.MORPH_OPEN,( 7, 7))
cv2.imshow( "obj",obj)
cv2.imshow( "opening",opening)
我喜欢这种写法,这将有长远影响。
6、梯度变化,包括1阶、2阶和混合的。
obj = cv2.imread( "e:/template/pig.jpg", 0)
laplacian = cv2.Laplacian(obj,cv2.CV_64F)
sobelx=cv2.Sobel(obj,cv2.CV_64F, 1, 0,ksize= 5)
sobely=cv2.Sobel(obj,cv2.CV_64F, 0, 1,ksize= 5)
7、梯度融合
曾经这段代码很神秘的,但是今日使用Python来写,就非常简单。可以看出,Python用来处理二维矩阵信息是很强的。
# Standard imports
import cv2
import numpy as np
A = cv2.imread( "e:/template/apple.jpg")
B = cv2.imread( "e:/template/orange.jpg")
G = A.copy()
gpA=[G]
for i in range( 6):
G = cv2.pyrDown(G)
gpA.append(G)
G = B.copy()
gpB = [G]
for i in range( 6):
G = cv2.pyrDown(G)
gpB.append(G)
lpA = [gpA[ 5]]
for i in range( 5, 0,- 1):
GE = cv2.pyrUp(gpA[i])
L = cv2.subtract(gpA[i- 1],GE)
lpA.append(L)
lpB = [gpB[ 5]]
for i in range( 5, 0,- 1):
GE = cv2.pyrUp(gpB[i])
L = cv2.subtract(gpB[i- 1],GE)
lpB.append(L)
LS = []
for la,lb in zip(lpA,lpB):
rows,cols,dpt= la.shape
print(rows,cols)
ls = np.hstack((la[:, 0:cols// 2],lb[:,cols// 2:])) #直接横向排列
LS.append(ls)
ls_ = LS[ 0]
for i in range( 1, 6):
ls_ = cv2.pyrUp(ls_)
ls_ = cv2.add(ls_,LS[i])
real = np.hstack((A[:,:cols// 2],B[:,cols// 2:]))
cv2.imshow( "ls_",ls_)
cv2.imshow( "real",real)
cv2.waitKey()
8、轮廓寻找
import cv2
import numpy as np
src = cv2.imread( "e:/template/rectangle.jpg")
gray = cv2.cvtColor(src,cv2.COLOR_BGR2GRAY)
ret,thresh = cv2.threshold(gray, 127, 255, 0)
contours,hierarchy = cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_NONE)
print(contours)
src = cv2.drawContours(src,contours,- 1,( 0, 255, 0), 3)
cv2.imshow( "src",src)
cv2.waitKey()
这里,使用 cv2.CHAIN_APPROX_NONE 或者不同的参数的话,会获得不同的轮廓结果。这对于我现有的轮廓分析研究,也是有帮助的。
9、轮廓的最小 接圆和最大内切圆
外接圆比较简单
(x,y),radius = cv2.minEnclosingCircle(contours[ 0])
center = (int(x),int(y))
radius = int(radius)
src = cv2.circle(src,center,radius,( 0, 255, 0), 2)
注意它这里的表示方法。内切圆则采用特殊方法。
# Get the contours
contours, _ = cv.findContours(thresh, cv.RETR_TREE, cv.CHAIN_APPROX_SIMPLE)
# Calculate the distances to the contour
raw_dist = np.empty(thresh.shape, dtype=np.float32)
for i in range(src.shape[ 0]):
for j in range(src.shape[ 1]):
raw_dist[i,j] = cv.pointPolygonTest(contours[ 0], (j,i), True)
minVal, maxVal, _, maxDistPt = cv.minMaxLoc(raw_dist)
minVal = abs(minVal)
maxVal = abs(maxVal)
# Depicting the distances graphically
drawing = np.zeros((src.shape[ 0], src.shape[ 1], 3), dtype=np.uint8)
for i in range(src.shape[ 0]):
for j in range(src.shape[ 1]):
if raw_dist[i,j] < 0:
drawing[i,j, 0] = 255 - abs(raw_dist[i,j]) * 255 / minVal
elif raw_dist[i,j] > 0:
drawing[i,j, 2] = 255 - raw_dist[i,j] * 255 / maxVal
else:
drawing[i,j, 0] = 255
drawing[i,j, 1] = 255
drawing[i,j, 2] = 255
cv.circle(drawing,maxDistPt,int(maxVal),( 255, 255, 255))
cv.imshow( 'Source', src)
cv.imshow( 'Distance and inscribed circle', drawing)
cv.waitKey()
最大内接圆则复杂许多。
10、寻找轮廓的极点
contours, _ = cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
cnt = contours[ 0]
leftmost = tuple(cnt[cnt[:,:, 0].argmin()][ 0])
rightmost= tuple(cnt[cnt[:,:, 0].argmax()][ 0])
topmost = tuple(cnt[cnt[:,:, 1].argmin()][ 0])
bottommost=tuple(cnt[cnt[:,:, 1].argmax()][ 0])
cv2.circle(src,leftmost, 5,( 0, 255, 0))
cv2.circle(src,rightmost, 5,( 0, 255, 255))
cv2.circle(src,topmost, 5,( 255, 255, 0))
cv2.circle(src,bottommost, 5,( 255, 0, 0))
cv2.imshow( "src",src)
这是一种很好的方法,能够直接找出轮廓的各方向边界。
11 模板匹配
src = cv.imread( "e:/template/lena.jpg", 0)
template = cv.imread( "e:/template/lenaface.jpg", 0)
w,h = template.shape
res = cv.matchTemplate(src,template,cv.TM_CCOEFF)
min_val,max_val,min_loc,max_loc = cv.minMaxLoc(res)
cv.rectangle(src,max_loc,(max_loc[ 0]+w,max_loc[ 1]+h),( 0, 0, 255), 2)
cv.imshow( "template",template)
cv.imshow( "src",src)
cv.waitKey()
我想体现的是python它的写法有很大不同。
src = cv.imread( "e:/template/coin.jpg")
gray = cv.cvtColor(src,cv.COLOR_BGR2GRAY)
template = cv.imread( "e:/template/coincut.jpg", 0)
w,h = template.shape
res = cv.matchTemplate(gray,template,cv.TM_CCOEFF_NORMED)
threshold = 0.4
loc = np.where(res>=threshold)
print(loc)
for pt in zip(*loc[:: 1]):
cv.rectangle(src,pt,(pt[ 0]+w,pt[ 1]+h),( 0, 0, 255), 2)
cv.imshow( "template",template)
cv.imshow( "src",src)
cv.waitKey()
结合使用阈值,可以实现多目标匹配。
# Standard imports
import cv2 as cv
import numpy as np
src = cv.imread( "e:/template/coin.jpg")
gray = cv.cvtColor(src,cv.COLOR_BGR2GRAY)
template = cv.imread( "e:/template/coincut.jpg", 0)
w,h = template.shape
res = cv.matchTemplate(gray,template,cv.TM_CCOEFF_NORMED)
threshold = 0.6
loc = np.where(res>=threshold)
print(loc)
for pt in zip(*loc[::- 1]): #排序方法为height width
print(pt)
cv.rectangle(src,pt,(pt[ 0]+w,pt[ 1]+h),( 0, 0, 255), 2)
cv.imshow( "template",template)
cv.imshow( "src",src)
cv.waitKey()
特别需要注意其排序方法。但是这里的阈值选择,也是超参数类型的。
12 HoughCircle
src = cv.imread( "e:/template/circle.jpg", 0)
src = cv.medianBlur(src, 5)
cimg = cv.cvtColor(src,cv.COLOR_GRAY2BGR)
circles = cv.HoughCircles(src,cv.HOUGH_GRADIENT, 1, 20,param1= 50,param2= 30,minRadius= 0,maxRadius= 0)
circles = np.uint16(np.around(circles))
for i in circles[ 0,:]:
cv.circle(cimg,(i[ 0],i[ 1]),i[ 2],( 0, 255, 0), 2)
cv.circle(cimg,(i[ 0],i[ 1]), 2,( 0, 0, 255), 3)
cv.imshow( "src",cimg)
cv.waitKey()
13 风水岭算法
# Standard imports
import cv2 as cv
import numpy as np
src = cv.imread( "e:/template/water_coins.jpg")
gray =cv.cvtColor(src,cv.COLOR_BGR2GRAY)
_,thresh = cv.threshold(gray, 0, 255,cv.THRESH_BINARY_INV+cv.THRESH_OTSU)
kernel = np.ones(( 3, 3),np.uint8)
opening = cv.morphologyEx(thresh,cv.MORPH_OPEN,kernel,iterations= 2)
sur_bg = cv.dilate(opening,kernel)
dist_transform = cv.distanceTransform(opening, 1, 5)
_,sur_fg=cv.threshold(dist_transform, 0.7*dist_transform.max(), 255, 0)
sur_fg = np.uint8(sur_fg)
unknow = cv.subtract(sur_bg,sur_fg)
_,markers1 = cv.connectedComponents(sur_fg)
markers = markers1+ 1
markers[unknow == 255] = 0
markers3 = cv.watershed(src,markers)
src[markers3 == - 1] = [ 255, 0, 0]
cv.imshow( "src",src)
cv.waitKey()
这个结果,具有参考价值。