rnn.py

def simple_rnn(cell,inputs,init_state=None,batch_size=None,dtype=None):
state = init_state
if state is None:
state = cell.zero_state(batch_size, dtype)
outputs = []
for input_ in inputs:
output, state = cell(input_, state)
outputs.append(output)
return

rnn_cell.py

#coding = UTF-8
import tensorflow as tf
from tensorflow.contrib.rnn import RNNCell

_BIAS_VARIABLE_NAME = "bias"
_WEIGHTS_VARIABLE_NAME = "kernel"

class Linear:
#input_list 每个是2D
def __init__(self,
input_list,
output_size,
build_bias,
bias_initializer=None,
kernel_initializer=None
):
total_arg_size = 0
shapes = [a.get_shape() for a in input_list]
for shape in shapes:
total_arg_size += shape[1].value
dtype = [a.dtype for a in input_list][0]
scope = tf.get_variable_scope()
with tf.variable_scope(scope) as outer_scope:
self._weights = tf.get_variable(
_WEIGHTS_VARIABLE_NAME, [total_arg_size, output_size],
dtype=dtype,
initializer=kernel_initializer)#必须为None而不能是tf.random_normal_initializer()
with tf.variable_scope(outer_scope) as inner_scope:
inner_scope.set_partitioner(None)
bias_initializer = bias_initializer or tf.constant_initializer(0.0, dtype=dtype)
self._biases = tf.get_variable(
_BIAS_VARIABLE_NAME, [output_size],
dtype=dtype,
initializer=bias_initializer)

def __call__(self, args):
result = tf.matmul(tf.concat(args, 1), self._weights)
result = tf.nn.bias_add(result, self._biases)
return result


class BasicRNNCell(RNNCell):

#num_units 是cell的大小
def __init__(self, num_units, activation=None, reuse=None):
# super(BasicRNNCell, self).__init__(_reuse=reuse)
self.num_units = num_units
self.activation = tf.tanh

# inputs [batch_size, data_size]
# state [batch_size, self.num_units]
# return [batch_size, self.num_units]
def __call__(self, inputs, state, scope=None):
self._linear = Linear([inputs, state], self.num_units) #所以所有权重参数都在Linear里

output = self.activation(self._linear([inputs, state]))
return output, output

@property
def state_size(self):
return self.num_units

@property
def output_size(self):
return self.num_units



class GRUCell(RNNCell):
"""Gated Recurrent Unit cell (cf. http://arxiv.org/abs/1406.1078).
"""

def __init__(self,
num_units,
activation=None,
reuse=None,
kernel_initializer=None,
bias_initializer=None):
super(GRUCell, self).__init__(_reuse=reuse)
self._num_units = num_units
self._activation = activation or tf.tanh
self._kernel_initializer = kernel_initializer
self._bias_initializer = bias_initializer
self._gate_linear = None
self._candidate_linear = None

@property
def state_size(self):
return self._num_units

@property
def output_size(self):
return self._num_units

#inputs的维数rnn gru lstm都是一样的
def call(self, inputs, state):
"""Gated recurrent unit (GRU) with nunits cells."""
if self._gate_linear is None:
bias_ones = self._bias_initializer
if self._bias_initializer is None:
bias_ones = tf.constant_initializer(1.0, dtype=inputs.dtype)
with tf.variable_scope("gates"): # Reset gate and update gate.
self._gate_linear = Linear(
[inputs, state],
2 * self._num_units,
True,
bias_initializer=bias_ones,
kernel_initializer=self._kernel_initializer)

value = tf.sigmoid(self._gate_linear([inputs, state])) # 理解了Linear就理解了一半了
r, u = tf.split(value=value, num_or_size_splits=2, axis=1)

r_state = r * state
if self._candidate_linear is None:
with tf.variable_scope("candidate"):
self._candidate_linear = Linear(
[inputs, r_state],
self._num_units,
True,
bias_initializer=self._bias_initializer,
kernel_initializer=self._kernel_initializer)
c = self._activation(self._candidate_linear([inputs, r_state]))
new_h = u * state + (1 - u) * c
return new_h, new_h




class BasicLSTMCell(RNNCell):
"""Basic LSTM recurrent network cell.
The implementation is based on: http://arxiv.org/abs/1409.2329.
"""

def __init__(self, num_units, forget_bias=1.0,
state_is_tuple=True, activation=None, reuse=None):
super(BasicLSTMCell, self).__init__(_reuse=reuse)
self._num_units = num_units
self._forget_bias = forget_bias
self._state_is_tuple = state_is_tuple
self._activation = activation or tf.tanh
self._linear = None

@property
def state_size(self):
return ((self._num_units, self._num_units)
if self._state_is_tuple else 2 * self._num_units)

@property
def output_size(self):
return self._num_units

#inputs的维数rnn gru lstm都是一样的
def call(self, inputs, state):
sigmoid = tf.sigmoid
# Parameters of gates are concatenated into one multiply for efficiency.
if self._state_is_tuple:
c, h = state
else:
c, h = tf.split(value=state, num_or_size_splits=2, axis=1)

if self._linear is None:
self._linear = Linear([inputs, h], 4 * self._num_units, True)
# i = input_gate, j = new_input, f = forget_gate, o = output_gate
i, j, f, o = tf.split(
value=self._linear([inputs, h]), num_or_size_splits=4, axis=1)

new_c = (
c * sigmoid(f + self._forget_bias) + sigmoid(i) * self._activation(j))
new_h = self._activation(new_c) * sigmoid(o)

if self._state_is_tuple:
new_state = (new_c, new_h)
else:
new_state = tf.concat([new_c, new_h], 1)
return

test.py

from __future__ import print_function

import tensorflow as tf
from tensorflow.contrib import rnn
from rnn_cell import BasicRNNCell
from rnn_cell import GRUCell
from rnn_cell import BasicLSTMCell
from rnn import simple_rnn
# Import MNIST data
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("./", one_hot=True)

'''
To classify images using a recurrent neural network, we consider every image
row as a sequence of pixels. Because MNIST image shape is 28*28px, we will then
handle 28 sequences of 28 steps for every sample.
'''

# Training Parameters
learning_rate = 0.001
training_steps = 10000
batch_size = 128
display_step = 200

# Network Parameters
num_input = 28 # MNIST data input (img shape: 28*28)
timesteps = 28 # timesteps
num_hidden = 128 # hidden layer num of features
num_classes = 10 # MNIST total classes (0-9 digits)

# tf Graph input
X = tf.placeholder("float", [None, timesteps, num_input])
Y = tf.placeholder("float", [None, num_classes])

# Define weights
weights = {
'out': tf.Variable(tf.random_normal([num_hidden, num_classes]))
}
biases = {
'out': tf.Variable(tf.random_normal([num_classes]))
}


def RNN(x, weights, biases):

# Prepare data shape to match `rnn` function requirements
# Current data input shape: (batch_size, timesteps, n_input)
# Required shape: 'timesteps' tensors list of shape (batch_size, n_input)

# Unstack to get a list of 'timesteps' tensors of shape (batch_size, n_input)
x = tf.unstack(x, timesteps, 1)

# Define a lstm cell with tensorflow
# lstm_cell = GRUCell(num_hidden)
# lstm_cell = BasicRNNCell(num_hidden)
# lstm_cell = rnn.GRUCell(num_hidden)
# lstm_cell = rnn.BasicRNNCell(num_hidden)
# lstm_cell = rnn.BasicLSTMCell(num_hidden)
lstm_cell = BasicLSTMCell(num_hidden)

# Get lstm cell output
# outputs, states = rnn.static_rnn(lstm_cell, x, dtype=tf.float32)
outputs, states = simple_rnn(lstm_cell, x, batch_size=batch_size,dtype=tf.float32)

# Linear activation, using rnn inner loop last output
return tf.matmul(outputs[-1], weights['out']) + biases['out']

logits = RNN(X, weights, biases)
prediction = tf.nn.softmax(logits)

# Define loss and optimizer
loss_op = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(
logits=logits, labels=Y))
optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)
train_op = optimizer.minimize(loss_op)

# Evaluate model (with test logits, for dropout to be disabled)
correct_pred = tf.equal(tf.argmax(prediction, 1), tf.argmax(Y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))

# Initialize the variables (i.e. assign their default value)
init = tf.global_variables_initializer()

# Start training
with tf.Session() as sess:

# Run the initializer
sess.run(init)

for step in range(1, training_steps+1):
batch_x, batch_y = mnist.train.next_batch(batch_size)
# Reshape data to get 28 seq of 28 elements
batch_x = batch_x.reshape((batch_size, timesteps, num_input))
# Run optimization op (backprop)
sess.run(train_op, feed_dict={X: batch_x, Y: batch_y})
if step % display_step == 0 or step == 1:
# Calculate batch loss and accuracy
loss, acc = sess.run([loss_op, accuracy], feed_dict={X: batch_x,
Y: batch_y})
print("Step " + str(step) + ", Minibatch Loss= " + \
"{:.4f}".format(loss) + ", Training Accuracy= " + \
"{:.3f}".format(acc))

print("Optimization Finished!")

# Calculate accuracy for 128 mnist test images
test_len = 128
test_data = mnist.test.images[:test_len].reshape((-1, timesteps, num_input))
test_label = mnist.test.labels[:test_len]
print("Testing Accuracy:", \
sess.run(accuracy, feed_dict={X: test_data, Y: test_label}))