文章目录
4.5创建表
4.5.1管理表
4.5.2外部表。
4.5.3管理表与外部表的互相转换.

4.6分区表
4.6.1分区表基本操作。
4.6.2分区表注意事项

4.7修改表。
4.7.1重命名表。
4.7.2增加、修改和删除表分区
4.7.3增加/修改/替换列信息

4.8删除表。

第5章DML数据操作

5.1数据导入。
5.1.1向表中装载数据(Load)
5.1.2通过查询语句向表中插入数据(Insert).
5.1.3查询语句中创建表并加载数据(As Select)
5.1.4创建表时通过Location 指定加载数据路径
5.1.5Import 数据到指定Hive表中

5.2数据导出。
5.2.1Insert导出.
5.2.2Hadoop命令导出到本地
5.2.3Hive Shell命令导出
5.2.4Export 导出到HDFS上。

5.3清除表中数据(Truncate)

第6章查询

6.1基本查询(Select…From).
6.1.1全表和特定列查询。
6.1.2列别名
6.1.3算术运算符。
6.1.4常用函数。
6.1.5Limit 语句

6.2Where 语句.
6.2.1比较运算符(Between/In/Is Null)。
6.2.2 Like 和RLike.
6.2.3逻辑运算符(And/Or/Not)

6.3分组.
6.3.1Group By 语句
6.3.2 Having 语句。

4.5 创建表

1.建表语法

CREATE [EXTERNAL] TABLE [IF NOT EXISTS] table_name 
[(col_name data_type [COMMENT col_comment], ...)] 
[COMMENT table_comment] 
[PARTITIONED BY (col_name data_type [COMMENT col_comment], ...)] 
[CLUSTERED BY (col_name, col_name, ...) 
[SORTED BY (col_name [ASC|DESC], ...)] INTO num_buckets BUCKETS] 
[ROW FORMAT row_format] 
[STORED AS file_format] 
[LOCATION hdfs_path]

2.字段解释说明

(1)CREATE TABLE 创建一个指定名字的表。如果相同名字的表已经存在,则抛出异常;用户可以用 IF NOT EXISTS 选项来忽略这个异常。

(2)EXTERNAL关键字可以让用户创建一个外部表,在建表的同时指定一个指向实际数据的路径(LOCATION),Hive创建内部表时,会将数据移动到数据仓库指向的路径;若创建外部表,仅记录数据所在的路径,不对数据的位置做任何改变。在删除表的时候,内部表的元数据和数据会被一起删除,而外部表只删除元数据,不删除数据。

(3)COMMENT:为表和列添加注释。

(4)PARTITIONED BY创建分区表

(5)CLUSTERED BY创建分桶表

(6)SORTED BY不常用

(7)ROW FORMAT

DELIMITED [FIELDS TERMINATED BY char] [COLLECTION ITEMS TERMINATED BY char]
[MAP KEYS TERMINATED BY char] [LINES TERMINATED BY char] 
   | SERDE serde_name [WITH SERDEPROPERTIES (property_name=property_value, property_name=property_value, ...)]

用户在建表的时候可以自定义SerDe或者使用自带的SerDe。如果没有指定ROW FORMAT 或者ROW FORMAT DELIMITED,将会使用自带的SerDe。在建表的时候,用户还需要为表指定列,用户在指定表的列的同时也会指定自定义的SerDe,Hive通过SerDe确定表的具体的列的数据。

SerDe是Serialize/Deserilize的简称,目的是用于序列化和反序列化。

(8)STORED AS指定存储文件类型

常用的存储文件类型:SEQUENCEFILE(二进制序列文件)、TEXTFILE(文本)、RCFILE(列式存储格式文件)
如果文件数据是纯文本,可以使用STORED AS TEXTFILE。如果数据需要压缩,使用 STORED AS SEQUENCEFILE。

(9)LOCATION :指定表在HDFS上的存储位置。

(10)LIKE允许用户复制现有的表结构,但是不复制数据。

4.5.1 管理表

1.理论

默认创建的表都是所谓的管理表,有时也被称为内部表。因为这种表,Hive会(或多或少地)控制着数据的生命周期。Hive默认情况下会将这些表的数据存储在由配置项hive.metastore.warehouse.dir(例如,/user/hive/warehouse)所定义的目录的子目录下。 当我们删除一个管理表时,Hive也会删除这个表中数据。管理表不适合和其他工具共享数据。

2.案例实操
(1)普通创建表

create table if not exists student2(
id int, name string
)
row format delimited fields terminated by '\t'
stored as textfile
location '/user/hive/warehouse/student2';

(2)根据查询结果创建表(查询的结果会添加到新创建的表中)

create table if not exists student3 as select id, name from student;

hive 分区字段 作为查询条件 hive分区表查询_Hive


(3)根据已经存在的表结构创建表

create table if not exists student4 like student;

(4)查询表的类型

hive (default)> desc formatted student2;
Table Type:             MANAGED_TABLE

4.5.2 外部表

1.理论

因为表是外部表,所以Hive并非认为其完全拥有这份数据。删除该表并不会删除掉这份数据,不过描述表的元数据信息会被删除掉。

2.管理表和外部表的使用场景

每天将收集到的网站日志定期流入HDFS文本文件。在外部表(原始日志表)的基础上做大量的统计分析,用到的中间表、结果表使用内部表存储,数据通过SELECT+INSERT进入内部表。

3.案例实操

分别创建部门和员工外部表,并向表中导入数据。

(1)原始数据

[atguigu@hadoop102 datas]$ vim dept.txt
[atguigu@hadoop102 datas]$ vim emp.txt
[atguigu@hadoop102 datas]$ cat dept.txt 
10	ACCOUNTING	1700
20	RESEARCH	1800
30	SALES	1900
40	OPERATIONS	1700
[atguigu@hadoop102 datas]$ cat emp.txt 
7369	SMITH	CLERK	7902	1980-12-17	800.00		20
7499	ALLEN	SALESMAN	7698	1981-2-20	1600.00	300.00	30
7521	WARD	SALESMAN	7698	1981-2-22	1250.00	500.00	30
7566	JONES	MANAGER	7839	1981-4-2	2975.00		20
7654	MARTIN	SALESMAN	7698	1981-9-28	1250.00	1400.00	30
7698	BLAKE	MANAGER	7839	1981-5-1	2850.00		30
7782	CLARK	MANAGER	7839	1981-6-9	2450.00		10
7788	SCOTT	ANALYST	7566	1987-4-19	3000.00		20
7839	KING	PRESIDENT		1981-11-17	5000.00		10
7844	TURNER	SALESMAN	7698	1981-9-8	1500.00	0.00	30
7876	ADAMS	CLERK	7788	1987-5-23	1100.00		20
7900	JAMES	CLERK	7698	1981-12-3	950.00		30
7902	FORD	ANALYST	7566	1981-12-3	3000.00		20
7934	MILLER	CLERK	7782	1982-1-23	1300.00		10

(2)建表语句
创建部门表

create external table if not exists default.dept(
deptno int,
dname string,
loc int
)
row format delimited fields terminated by '\t';

创建员工表

create external table if not exists default.emp(
empno int,
ename string,
job string,
mgr int,
hiredate string, 
sal double, 
comm double,
deptno int)
row format delimited fields terminated by '\t';

(3)查看创建的表

hive (default)> show tables;
OK
tab_name
dept
emp

(4)向外部表中导入数据
导入数据

hive (default)> load data local inpath '/opt/module/datas/dept.txt' into table default.dept;
hive (default)> load data local inpath '/opt/module/datas/emp.txt' into table default.emp;

查询结果

hive (default)> select * from emp;
hive (default)> select * from dept;

(5)查看表格式化数据

hive (default)> desc formatted dept;
Table Type:             EXTERNAL_TABLE

4.5.3 管理表与外部表的互相转换

只能用单引号,严格区分大小写,如果不是完全符合,那么只会添加kv 而不生效

(1)查询表的类型

hive (default)> desc formatted student2;
Table Type:             MANAGED_TABLE

(2)修改内部表student2为外部表

alter table student2 set tblproperties('EXTERNAL'='TRUE');

(3)查询表的类型

hive (default)> desc formatted student2;
Table Type:             EXTERNAL_TABLE

(4)修改外部表student2为内部表

alter table student2 set tblproperties('EXTERNAL'='FALSE');

(5)查询表的类型

hive (default)> desc formatted student2;
Table Type:             MANAGED_TABLE

注意:(‘EXTERNAL’=‘TRUE’)和(‘EXTERNAL’=‘FALSE’)为固定写法,区分大小写!

4.6 分区表

分区表实际上就是对应一个HDFS文件系统上的独立的文件夹,该文件夹下是该分区所有的数据文件。Hive中的分区就是分目录,把一个大的数据集根据业务需要分割成小的数据集。在查询时通过WHERE子句中的表达式选择查询所需要的指定的分区,这样的查询效率会提高很多。

4.6.1 分区表基本操作

1.引入分区表(需要根据日期对日志进行管理)

/user/hive/warehouse/log_partition/20170702/20170702.log
/user/hive/warehouse/log_partition/20170703/20170703.log
/user/hive/warehouse/log_partition/20170704/20170704.log

2.创建分区表语法

hive (default)> create table dept_partition(
deptno int, dname string, loc string
)
partitioned by (month string)
row format delimited fields terminated by '\t';

3.加载数据到分区表中

hive (default)> load data local inpath '/opt/module/datas/dept.txt' into table default.dept_partition partition(month='201709');
hive (default)> load data local inpath '/opt/module/datas/dept.txt' into table default.dept_partition partition(month='201708');
hive (default)> load data local inpath '/opt/module/datas/dept.txt' into table default.dept_partition partition(month='201707’);

hive 分区字段 作为查询条件 hive分区表查询_hive 分区字段 作为查询条件_02


图6-5 加载数据到分区表

hive 分区字段 作为查询条件 hive分区表查询_hive分区表_03


图6-6 分区表

4.查询分区表中数据

单分区查询

hive (default)> select * from dept_partition where month='201709';

hive 分区字段 作为查询条件 hive分区表查询_hive分区表_04


多分区联合查询 union(排序) or in 三种方式

hive (default)> select * from dept_partition where month='201709'
              union
              select * from dept_partition where month='201708'
              union
              select * from dept_partition where month='201707';

_u3.deptno      _u3.dname       _u3.loc _u3.month
10      ACCOUNTING      NEW YORK        201707
10      ACCOUNTING      NEW YORK        201708
10      ACCOUNTING      NEW YORK        201709
20      RESEARCH        DALLAS  201707
20      RESEARCH        DALLAS  201708
20      RESEARCH        DALLAS  201709
30      SALES   CHICAGO 201707
30      SALES   CHICAGO 201708
30      SALES   CHICAGO 201709
40      OPERATIONS      BOSTON  201707
40      OPERATIONS      BOSTON  201708
40      OPERATIONS      BOSTON  201709

5.增加分区

创建单个分区

hive (default)> alter table dept_partition add partition(month='201706') ;

hive 分区字段 作为查询条件 hive分区表查询_hive 分区字段 作为查询条件_05


同时创建多个分区 用空格分开

hive (default)> alter table dept_partition add partition(month='201705') partition(month='201704');

hive 分区字段 作为查询条件 hive分区表查询_hive 分区字段 作为查询条件_06


6.删除分区

删除单个分区

hive (default)> alter table dept_partition drop partition (month='201704');

同时删除多个分区 用逗号分开

hive (default)> alter table dept_partition drop partition (month='201705'), 	partition (month='201706');

7.查看分区表有多少分区

hive> show partitions dept_partition;

hive 分区字段 作为查询条件 hive分区表查询_hive的DML操作_07


8.查看分区表结构

hive> desc formatted dept_partition;

# Partition Information          
# col_name              data_type               comment             
month                   string

4.6.2 分区表注意事项

1.创建二级分区表

hive (default)> create table dept_partition2(
               deptno int, dname string, loc string
               )
               partitioned by (month string, day string)
               row format delimited fields terminated by '\t';

2.正常的加载数据

(1)加载数据到二级分区表中

hive (default)> load data local inpath '/opt/module/datas/dept.txt' into table
 default.dept_partition2 partition(month='201909', day='13');

(2)查询分区数据

hive (default)> select * from dept_partition2 where month='201709' and day='13';

hive 分区字段 作为查询条件 hive分区表查询_hive分区表_08


3.把数据直接上传到分区目录上,让分区表和数据产生关联的三种方式

(1)方式一:上传数据后修复

上传数据

hive (default)> dfs -mkdir -p
 /user/hive/warehouse/dept_partition2/month=201709/day=12;
hive (default)> dfs -put /opt/module/datas/dept.txt  /user/hive/warehouse/dept_partition2/month=201709/day=12;

查询数据(查询不到刚上传的数据)

hive (default)> select * from dept_partition2 where month='201709' and day='12';

执行修复命令

hive> msck repair table dept_partition2;

再次查询数据

hive (default)> select * from dept_partition2 where month='201709' and day='12';

hive 分区字段 作为查询条件 hive分区表查询_hive 分区字段 作为查询条件_09


(2)方式二:上传数据后添加分区

上传数据

hive (default)> dfs -mkdir -p
 /user/hive/warehouse/dept_partition2/month=201709/day=11;
hive (default)> dfs -put /opt/module/datas/dept.txt  /user/hive/warehouse/dept_partition2/month=201709/day=11;

执行添加分区

hive (default)> alter table dept_partition2 add partition(month='201709', day='11');

查询数据

hive (default)> select * from dept_partition2 where month='201709' and day='11';

(3)方式三:上传数据后load数据到分区
创建目录

hive (default)> dfs -mkdir -p
 /user/hive/warehouse/dept_partition2/month=201709/day=10;

上传数据

hive (default)> load data local inpath '/opt/module/datas/dept.txt' into table
 dept_partition2 partition(month='201709',day='10');

查询数据

hive (default)> select * from dept_partition2 where month='201709' and day='10';

4.7 修改表

4.7.1 重命名表

1.语法

ALTER TABLE table_name RENAME TO new_table_name

2.实操案例

hive (default)> alter table dept_partition2 rename to dept_partition3;

4.7.2 增加、修改和删除表分区

详见4.6.1分区表基本操作。

4.7.3 增加/修改/替换列信息

1.语法
更新列

ALTER TABLE table_name CHANGE [COLUMN] col_old_name col_new_name column_type [COMMENT col_comment] [FIRST|AFTER column_name]

增加和替换列

ALTER TABLE table_name ADD|REPLACE COLUMNS (col_name data_type [COMMENT col_comment], ...)

注:ADD是代表新增一字段,字段位置在所有列后面(partition列前),REPLACE则是表示替换表中所有字段。

2.实操案例

(1)查询表结构

hive> desc dept_partition;

(2)添加列

hive (default)> alter table dept_partition add columns(deptdesc string);

(3)查询表结构

hive> desc dept_partition;

hive 分区字段 作为查询条件 hive分区表查询_Hive导入导出_10


(4)更新列

hive (default)> alter table dept_partition change column deptdesc desc int;

hive 分区字段 作为查询条件 hive分区表查询_Hive导入导出_11


(5)查询表结构

hive> desc dept_partition;

(6)替换列

hive (default)> alter table dept_partition replace columns(deptno string, dname string, loc string);

(7)查询表结构
hive> desc dept_partition;

4.8 删除表

hive (default)> drop table dept_partition;

第5章 DML数据操作

5.1 数据导入

5.1.1 向表中装载数据(Load)

1.语法

hive> load data [local] inpath '/opt/module/datas/student.txt' [overwrite] into table student [partition (partcol1=val1,…)];

(1)load data:表示加载数据

(2)local:表示从本地加载数据到hive表(复制);否则从HDFS加载数据到hive表(移动)

(3)inpath:表示加载数据的路径

(4)overwrite into:表示覆盖表中已有数据,否则表示追加

(5)into table:表示加载到哪张表

(6)student:表示具体的表

(7)partition:表示上传到指定分区

2.实操案例
(0)创建一张表

hive (default)> create table student(id string, name string) row format delimited fields terminated by '\t';

(1)加载本地文件到hive

hive (default)> load data local inpath '/opt/module/datas/student.txt' into table default.student;

(2)加载HDFS文件到hive中
上传文件到HDFS

hive (default)> dfs -put /opt/module/datas/student.txt /user/atguigu/hive;

加载HDFS上数据

hive (default)> load data inpath '/user/atguigu/hive/student.txt' into table default.student;

(3)加载数据覆盖表中已有的数据
上传文件到HDFS

hive (default)> dfs -put /opt/module/datas/student.txt /user/atguigu/hive;

加载数据覆盖表中已有的数据

hive (default)> load data inpath '/user/atguigu/hive/student.txt' overwrite into table default.student;

hive 分区字段 作为查询条件 hive分区表查询_hive的DML操作_12


5.1.2 通过查询语句向表中插入数据(Insert)

1.创建一张分区表

hive (default)> create table student(id int, name string) partitioned by (month string) row format delimited fields terminated by '\t';

2.基本插入数据

hive (default)> insert into table  student partition(month='201709') values(1,'wangwu');

3.基本模式插入(根据单张表查询结果)

hive (default)> insert overwrite table student partition(month='201708')
         select id, name from student where month='201709';

4.多插入模式(根据多张表查询结果)

hive (default)> from student
          insert overwrite table student partition(month='201707')
          select id, name where month='201709'
          insert overwrite table student partition(month='201706')
          select id, name where month='201709';

5.1.3 查询语句中创建表并加载数据(As Select)

详见4.5.1章创建表。

根据查询结果创建表(查询的结果会添加到新创建的表中)

create table if not exists student3
as select id, name from student;

hive 分区字段 作为查询条件 hive分区表查询_hive分区表_13


5.1.4 创建表时通过Location指定加载数据路径

1.创建表,并指定在hdfs上的位置

hive (default)> create table if not exists student5(
          id int, name string
          )
          row format delimited fields terminated by '\t'
          location '/user/hive/warehouse/student5';

2.上传数据到hdfs上

hive (default)> dfs -put /opt/module/datas/student.txt
/user/hive/warehouse/student5;

3.查询数据

hive (default)> select * from student5;

5.1.5 Import数据到指定Hive表中
注意:先用export导出后,再将数据导入。

hive (default)> import table student2 partition(month='201709') from
 '/user/hive/warehouse/export/student';

5.2 数据导出

5.2.1 Insert导出

1.将查询的结果导出到本地

hive (default)> insert overwrite local directory '/opt/module/datas/export/student'
        select * from student;

2.将查询的结果格式化导出到本地

hive(default)>insert overwrite local directory '/opt/module/datas/export/student1'
       ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'             select * from student;

3.将查询的结果导出到HDFS上(没有local)

hive (default)> insert overwrite directory '/user/atguigu/student2'
         ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t' 
         select * from student;

5.2.2 Hadoop命令导出到本地

hive (default)> dfs -get /user/hive/warehouse/student/month=201709/000000_0
/opt/module/datas/export/student3.txt;

5.2.3 Hive Shell 命令导出
基本语法:(hive -f/-e 执行语句或者脚本 > file)

[atguigu@hadoop102 hive]$ bin/hive -e 'select * from default.student;' >
 /opt/module/datas/export/student4.txt;

5.2.4 Export导出到HDFS上

export table default.student to '/user/hive/warehouse/export/student';

5.3 清除表中数据(Truncate)

注意:Truncate只能删除管理表,不能删除外部表中数据

hive (default)> truncate table student;

第6章 查询

相当于复习mysql:JavaWeb之MySQL(1.1):MySQL数据处理之查询图解

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Select 查询语句语法:

[WITH CommonTableExpression (, CommonTableExpression)*]    (Note: Only available
 starting with Hive 0.13.0)
SELECT [ALL | DISTINCT] select_expr, select_expr, ...
  FROM table_reference
  [WHERE where_condition]
  [GROUP BY col_list]
  [ORDER BY col_list]
  [CLUSTER BY col_list
    | [DISTRIBUTE BY col_list] [SORT BY col_list]
  ]
 [LIMIT number]

6.1 基本查询(Select…From)

6.1.1 全表和特定列查询

1.全表查询

hive (default)> select * from emp;

2.选择特定列查询

hive (default)> select empno, ename from emp;

注意:

(1)SQL 语言大小写不敏感。
(2)SQL 可以写在一行或者多行
(3)关键字不能被缩写也不能分行
(4)各子句一般要分行写。
(5)使用缩进提高语句的可读性。

6.1.2 列别名

1.重命名一个列
2.便于计算
3.紧跟列名,也可以在列名和别名之间加入关键字‘AS’
4.案例实操

查询名称和部门

hive (default)> select ename AS name, deptno dn from emp;

6.1.3 算术运算符

表6-3

hive 分区字段 作为查询条件 hive分区表查询_hive分区表_14


案例实操

查询出所有员工的薪水后加1显示。

hive (default)> select sal +1 from emp;

6.1.4 常用函数

1.求总行数(count)

hive (default)> select count(*) cnt from emp;

2.求工资的最大值(max)

hive (default)> select max(sal) max_sal from emp;

3.求工资的最小值(min)

hive (default)> select min(sal) min_sal from emp;

4.求工资的总和(sum)

hive (default)> select sum(sal) sum_sal from emp;

5.求工资的平均值(avg)

hive (default)> select avg(sal) avg_sal from emp;

6.1.5 Limit语句

典型的查询会返回多行数据。LIMIT子句用于限制返回的行数。

hive (default)> select * from emp limit 5;

6.2 Where语句

1.使用WHERE子句,将不满足条件的行过滤掉

2.WHERE子句紧随FROM子句

3.案例实操

查询出薪水大于1000的所有员工

hive (default)> select * from emp where sal >1000;

6.2.1 比较运算符(Between/In/ Is Null)

1)下面表中描述了谓词操作符,这些操作符同样可以用于JOIN…ON和HAVING语句中。

表6-4

hive 分区字段 作为查询条件 hive分区表查询_hive 分区字段 作为查询条件_15

2)案例实操
(1)查询出薪水等于5000的所有员工

hive (default)> select * from emp where sal =5000;

(2)查询工资在500到1000的员工信息

hive (default)> select * from emp where sal between 500 and 1000;

(3)查询comm为空的所有员工信息

hive (default)> select * from emp where comm is null;

(4)查询工资是1500和5000的员工信息

hive (default)> select * from emp where sal IN (1500, 5000);

6.2.2 Like和RLike

1)使用LIKE运算选择类似的值

2)选择条件可以包含字符或数字:

% 代表零个或多个字符(任意个字符)。
_ 代表一个字符。

3)RLIKE子句是Hive中这个功能的一个扩展,其可以通过Java的正则表达式这个更强大的语言来指定匹配条件。

4)案例实操

(1)查找以2开头薪水的员工信息

hive (default)> select * from emp where sal LIKE '2%';

(2)查找第二个数值为2的薪水的员工信息

hive (default)> select * from emp where sal LIKE '_2%';

(3)查找薪水中含有2的员工信息

hive (default)> select * from emp where sal RLIKE '[2]';

6.2.3 逻辑运算符(And/Or/Not)

表6-5

hive 分区字段 作为查询条件 hive分区表查询_Hive_16


案例实操

(1)查询薪水大于1000,部门是30

hive (default)> select * from emp where sal>1000 and deptno=30;

(2)查询薪水大于1000,或者部门是30

hive (default)> select * from emp where sal>1000 or deptno=30;

(3)查询除了20部门和30部门以外的员工信息

hive (default)> select * from emp where deptno not IN(30, 20);

6.3 分组

6.3.1 Group By语句

GROUP BY语句通常会和聚合函数一起使用,按照一个或者多个列队结果进行分组,然后对每个组执行聚合操作。

案例实操:

(1)计算emp表每个部门的平均工资

hive (default)> select t.deptno, avg(t.sal) avg_sal from emp t group by t.deptno;

(2)计算emp每个部门中每个岗位的最高薪水

hive (default)> select t.deptno, t.job, max(t.sal) max_sal from emp t group by  t.deptno, t.job;

6.3.2 Having语句

1.having与where不同点

(1)where针对表中的列发挥作用,查询数据;having针对查询结果中的列发挥作用,筛选数据。

(2)where后面不能写分组函数,而having后面可以使用分组函数。

(3)having只用于group by分组统计语句。

2.案例实操

(1)求每个部门的平均薪水大于2000的部门

求每个部门的平均工资

hive (default)> select deptno, avg(sal) from emp group by deptno;

求每个部门的平均薪水大于2000的部门

hive (default)> select deptno, avg(sal) avg_sal from emp group by deptno having avg_sal > 2000;