>>> def f(x,y):
... return 10*x+y
...
>>> b = fromfunction(f,(5,4),dtype=int)
>>> b
array([[ 0, 1, 2, 3],
[10, 11, 12, 13],
[20, 21, 22, 23],
[30, 31, 32, 33],
[40, 41, 42, 43]])
>>> b[2,3]
23
>>> b[0:5,1]
array([ 1, 11, 21, 31, 41])
>>> b[ : ,1]
array([ 1, 11, 21, 31, 41])
>>> b[1:3, : ]
array([[10, 11, 12, 13],
[20, 21, 22, 23]])
>>> b[-1]
array([40, 41, 42, 43])
>>> b[ ... ,1]
array([ 1, 11, 21, 31, 41])
>>> b[1,:]
array([10, 11, 12, 13])
>>> b[1,...]
array([10, 11, 12, 13])
>>> b[...]
array([[ 0, 1, 2, 3],
[10, 11, 12, 13],
[20, 21, 22, 23],
[30, 31, 32, 33],
[40, 41, 42, 43]])
>>> c = array( [ [[ 0, 1, 2],
... [ 10, 12, 13]],
... [[100,101,102],
... [110,112,113]] ] )
>>> c
array([[[ 0, 1, 2],
[ 10, 12, 13]], [[100, 101, 102],
[110, 112, 113]]])
>>> c.shape (2, 2, 3)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: 'tuple' object is not callable
>>> c.shape(2, 2, 3)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: 'tuple' object is not callable
>>> c.shape
(2, 2, 3)
>>> c
array([[[ 0, 1, 2],
[ 10, 12, 13]], [[100, 101, 102],
[110, 112, 113]]])
>>> c[1,...]
array([[100, 101, 102],
[110, 112, 113]])
>>> c[1,:,:]
array([[100, 101, 102],
[110, 112, 113]])
>>> c[1]
array([[100, 101, 102],
[110, 112, 113]])
>>> c[...,2]
array([[ 2, 13],
[102, 113]])
>>> c.shape
(2, 2, 3)
>>> d=c[...,2]
>>> d.shape
(2, 2)
>>> c[:,:,2]
array([[ 2, 13],
[102, 113]])
>>> b
array([[ 0, 1, 2, 3],
[10, 11, 12, 13],
[20, 21, 22, 23],
[30, 31, 32, 33],
[40, 41, 42, 43]])
>>> for row in b:
... print row
...
[0 1 2 3]
[10 11 12 13]
[20 21 22 23]
[30 31 32 33]
[40 41 42 43]
>>> for element in b.flat:
... print element,
...
0 1 2 3 10 11 12 13 20 21 22 23 30 31 32 33 40 41 42 43
>>> c=b.flat
>>> c
<numpy.flatiter object at 0x02153BF0>
>>> type(b)
<type 'numpy.ndarray'>
>>> type(c)
<type 'numpy.flatiter'>
>>> c=array(c)
>>> c
array([ 0, 1, 2, 3, 10, 11, 12, 13, 20, 21, 22, 23, 30, 31, 32, 33, 40,
41, 42, 43])
>>> type(c)
<type 'numpy.ndarray'>
>>>
索引,切片和迭代
一维 数组可以被索引、切片和迭代,就像 列表 和其它Python序列。
>>> a = arange(10)**3
>>> a
array([ 0, 1, 8, 27, 64, 125, 216, 343, 512, 729])
>>> a[2]
8
>>> a[2:5]
array([ 8, 27, 64])
>>> a[:6:2] = -1000 # equivalent to a[0:6:2] = -1000; from start to position 6, exclusive, set every 2nd element to -1000
>>> a
array([-1000, 1, -1000, 27, -1000, 125, 216, 343, 512, 729])
>>> a[ : :-1] # reversed a
array([ 729, 512, 343, 216, 125, -1000, 27, -1000, 1, -1000])
>>> for i in a:
... print i**(1/3.),
...
nan 1.0 nan 3.0 nan 5.0 6.0 7.0 8.0 9.0
>>> a = arange(10)**3
>>> a
array([ 0, 1, 8, 27, 64, 125, 216, 343, 512, 729])
>>> a[2]
8
>>> a[2:5]
array([ 8, 27, 64])
>>> a[:6:2] = -1000 # equivalent to a[0:6:2] = -1000; from start to position 6, exclusive, set every 2nd element to -1000
>>> a
array([-1000, 1, -1000, 27, -1000, 125, 216, 343, 512, 729])
>>> a[ : :-1] # reversed a
array([ 729, 512, 343, 216, 125, -1000, 27, -1000, 1, -1000])
>>> for i in a:
... print i**(1/3.),
...
nan 1.0 nan 3.0 nan 5.0 6.0 7.0 8.0 9.0
多维
>>> def f(x,y):
... return 10*x+y
...
>>> b = fromfunction(f,(5,4),dtype=int)
>>> b
array([[ 0, 1, 2, 3],
[10, 11, 12, 13],
[20, 21, 22, 23],
[30, 31, 32, 33],
[40, 41, 42, 43]])
>>> b[2,3]
23
>>> b[0:5, 1] # each row in the second column of b
array([ 1, 11, 21, 31, 41])
>>> b[ : ,1] # equivalent to the previous example
array([ 1, 11, 21, 31, 41])
>>> b[1:3, : ] # each column in the second and third row of b
array([[10, 11, 12, 13],
[20, 21, 22, 23]])
>>> def f(x,y):
... return 10*x+y
...
>>> b = fromfunction(f,(5,4),dtype=int)
>>> b
array([[ 0, 1, 2, 3],
[10, 11, 12, 13],
[20, 21, 22, 23],
[30, 31, 32, 33],
[40, 41, 42, 43]])
>>> b[2,3]
23
>>> b[0:5, 1] # each row in the second column of b
array([ 1, 11, 21, 31, 41])
>>> b[ : ,1] # equivalent to the previous example
array([ 1, 11, 21, 31, 41])
>>> b[1:3, : ] # each column in the second and third row of b
array([[10, 11, 12, 13],
[20, 21, 22, 23]])
当少于轴数的索引被提供时,确失的索引被认为是整个切片:
>>> b[-1] # the last row. Equivalent to b[-1,:]
array([40, 41, 42, 43])
>>> b[-1] # the last row. Equivalent to b[-1,:]
array([40, 41, 42, 43])
b[i]
中括号中的表达式被当作 i
和一系列 :
,来代表剩下的轴。NumPy也允许你使用“点”像 b[i,...]
。
点
- x[1,2,…] 等同于 x[1,2,:,:,:],
- x[…,3] 等同于 x[:,:,:,:,3]
- x[4,…,5,:] 等同 x[4,:,:,5,:].
>>> c = array( [ [[ 0, 1, 2], # a 3D array (two stacked 2D arrays) ... [ 10, 12, 13]], ... ... [[100,101,102], ... [110,112,113]] ] ) >>> c.shape (2, 2, 3) >>> c[1,...] # same as c[1,:,:] or c[1] array([[100, 101, 102], [110, 112, 113]]) >>> c[...,2] # same as c[:,:,2] array([[ 2, 13], [102, 113]])
迭代 多维数组是就第一个轴而言的: 2
>>> for row in b:
... print row
...
[0 1 2 3]
[10 11 12 13]
[20 21 22 23]
[30 31 32 33]
[40 41 42 43]
然而,如果一个人想对每个数组中元素进行运算,我们可以使用flat属性,该属性是数组元素的一个迭代器:
>>> for element in b.flat:
... print element,
...
0 1 2 3 10 11 12 13 20 21 22 23 30 31 32 33 40 41 42 43
>>> for element in b.flat:
... print element,
...
0 1 2 3 10 11 12 13 20 21 22 23 30 31 32 33 40 41 42 43
更多[], …, newaxis, ndenumerate, indices, index exp 参考 NumPy示例