文章目录

1. 异常检测所解决的问题

● 解决一些基于规则或者 Dashboard 难以实时发现的问题
● IT 运维

  • ○ 如何知道系统正常运行 / 如何调节阈值触发合适的报警 / 如何进行归因分析

● 信息安全

  • ○ 哪些用户构成了内部威胁 / 系统是否感染了病毒

● 物联网 / 数据采集监控

  • ○ 工厂和设备是否正常运营

2. 什么是正常

  • ○ 随着时间的推移,某个个体一直表现出一致的行为
  • ○ 某个个体和他的同类比较,一直表现出和其他个体一致的行为

3. 什么是异常

○ 和自己比 - 个体的行为发生了急剧的变化
○ 和他人比 - 个体明显区别于其他的个体

4. 判定异常需要一定的指导

Elasticsearch 用机器学习实现时序数据的异常检测(上)_机器学习

5. 相关术语

● Elastic 平台的机器学习功能
○ Elastic 的ML,主要针对时序数据的异常检测和预测
● 非监督机器学习
○ 不需要使用人工标签的数据来学习,仅仅依靠历史数据自动学习
● 贝叶斯统计
○ 一种概率计算方法,使用先验结果来计算现值或者预测未来的数值
● 异常检测
○ 异常代表的是不同的,但未必代表的是坏的 / 定义异常需要一些指导,从哪个方面去看

6. 如何学习“正常”

● 观察不同的人每天走路的步数,由此预测明天他会走多少步
● 需要观察不同的人,需要观察多久?
○ 一天 / 一周 / 一个月 / 一年 / 十年
● 直觉: 观察的数据多,你的预测越准确
● 使用这些观察来创建一个模型
○ 概率分布函数;使用这个模型找出什么事几乎不可能的事件

7. 机器学习帮你自动挑选模型

● 使用成熟的机器学习技术,挑选适合数据的正确的统计模型
● 更好的模型 = 更好的异常检测 = 更少的误报和漏报
● 出现在低概率区域,发现异

8. 模型与需要考虑任何的周期

Elasticsearch 用机器学习实现时序数据的异常检测(上)_elasticsearch_02

9. ES ML:单指标 / ES ML:单指标 / 种群分析

Elasticsearch 用机器学习实现时序数据的异常检测(上)_数据_03

10. 单指标任务

● Create New Job
● 选择 Index Pattern,选择 Fare quote
● 选择单指标任务

  • ○ Aggregation ○ Field
  • ○ Bucket Span (取决于用户的数据业务 /数据的采样时间 / 波动情况 / 需要预测的频率)
  • ○ Use full dat

Elasticsearch 用机器学习实现时序数据的异常检测(上)_json_04

11. Demo

● Create New Single Metric Job

  • ○ 基于 Index Pattern 和 Full data set

● Create Customer URL

  • ○ Saved Query

● 对数据实现预测
Elasticsearch 用机器学习实现时序数据的异常检测(上)_机器学习_05
下载数据
​​​https://download.elasticsearch.org/demos/machine_learning/gettingstarted/server_metrics.tar.gz​

[root@master machine_leanrning]# tar -zxvf server_metrics.tar.gz 
files/
files/server-metrics_16.json
files/server-metrics_6.json
files/server-metrics_20.json
files/server-metrics_7.json
files/server-metrics_17.json
files/create_single_metric.sh
files/create_multi_metric_noauth.sh
files/server-metrics_10.json
files/server-metrics_11.json
files/create_multi_metric.sh
files/server-metrics_1.json
files/README.md
files/server-metrics_2.json
files/server-metrics_12.json
files/server-metrics_13.json
files/server-metrics_3.json
files/._upload_server_metrics_noauth.sh
files/upload_server_metrics_noauth.sh
files/server-metrics_14.json
files/create_single_metric_noauth.sh
files/server-metrics_8.json
files/server-metrics_18.json
files/._upload_server_metrics.sh
files/upload_server_metrics.sh
files/server-metrics_4.json
files/server-metrics_5.json
files/server-metrics_19.json
files/server-metrics_9.json
files/server-metrics_15.json
[root@master machine_leanrning]# ls
files server_metrics.tar.gz
[root@master machine_leanrning]# cd files/
[root@master files]# ls
create_multi_metric_noauth.sh create_single_metric.sh server-metrics_11.json server-metrics_14.json server-metrics_17.json server-metrics_1.json server-metrics_3.json server-metrics_6.json server-metrics_9.json
create_multi_metric.sh README.md server-metrics_12.json server-metrics_15.json server-metrics_18.json server-metrics_20.json server-metrics_4.json server-metrics_7.json upload_server_metrics_noauth.sh
create_single_metric_noauth.sh server-metrics_10.json server-metrics_13.json server-metrics_16.json server-metrics_19.json server-metrics_2.json server-metrics_5.json server-metrics_8.json upload_server_metrics.sh
[root@master files]# bash upload_server_metrics.sh
== Script for creating index and uploading data ==


== Deleting old index ==

{"error":{"root_cause":[{"type":"index_not_found_exception","reason":"no such index [server-metrics]","resource.type":"index_or_alias","resource.id":"server-metrics","index_uuid":"_na_","index":"server-metrics"}],"type":"index_not_found_exception","reason":"no such index [server-metrics]","resource.type":"index_or_alias","resource.id":"server-metrics","index_uuid":"_na_","index":"server-metrics"},"status":404}
== Creating Index - server-metrics ==

{"error":{"root_cause":[{"type":"mapper_parsing_exception","reason":"Root mapping definition has unsupported parameters: [metric : {properties={deny={type=long}, total={type=long}, @timestamp={type=date}, response={type=float}, service={type=keyword}, host={type=keyword}, accept={type=long}}}]"}],"type":"mapper_parsing_exception","reason":"Failed to parse mapping [_doc]: Root mapping definition has unsupported parameters: [metric : {properties={deny={type=long}, total={type=long}, @timestamp={type=date}, response={type=float}, service={type=keyword}, host={type=keyword}, accept={type=long}}}]","caused_by":{"type":"mapper_parsing_exception","reason":"Root mapping definition has unsupported parameters: [metric : {properties={deny={type=long}, total={type=long}, @timestamp={type=date}, response={type=float}, service={type=keyword}, host={type=keyword}, accept={type=long}}}]"}},"status":400}
== Bulk uploading data to index...

Server-metrics_1 uploaded
Server-metrics_2 uploaded
Server-metrics_3 uploaded
Server-metrics_4 uploaded
Server-metrics_5 uploaded
Server-metrics_6 uploaded
Server-metrics_7 uploaded
Server-metrics_8 uploaded
Server-metrics_9 uploaded
Server-metrics_10 uploaded
Server-metrics_11 uploaded
Server-metrics_12 uploaded
Server-metrics_13 uploaded
Server-metrics_14 uploaded
Server-metrics_15 uploaded
Server-metrics_16 uploaded
Server-metrics_17 uploaded
Server-metrics_18 uploaded
Server-metrics_19 uploaded
Server-metrics_20 uploaded
done - output to /dev/null

== Check upload
health status index uuid pri rep docs.count docs.deleted store.size pri.store.size
yellow open server-metrics nE8SdaN4TTu4D95wvGLIjw 1 1 707995 0 70mb 70mb

Server-metrics uploaded

创建数据索引
Elasticsearch 用机器学习实现时序数据的异常检测(上)_机器学习_06

Elasticsearch 用机器学习实现时序数据的异常检测(上)_elasticsearch_07
Elasticsearch 用机器学习实现时序数据的异常检测(上)_json_08
Elasticsearch 用机器学习实现时序数据的异常检测(上)_elasticsearch_09
Elasticsearch 用机器学习实现时序数据的异常检测(上)_elasticsearch_10
Elasticsearch 用机器学习实现时序数据的异常检测(上)_elasticsearch_11
Elasticsearch 用机器学习实现时序数据的异常检测(上)_机器学习_12
Elasticsearch 用机器学习实现时序数据的异常检测(上)_异常检测_13
定制化URL
Elasticsearch 用机器学习实现时序数据的异常检测(上)_elasticsearch_14
Elasticsearch 用机器学习实现时序数据的异常检测(上)_数据_15
Elasticsearch 用机器学习实现时序数据的异常检测(上)_elasticsearch_16
Elasticsearch 用机器学习实现时序数据的异常检测(上)_elasticsearch_17
Elasticsearch 用机器学习实现时序数据的异常检测(上)_异常检测_18
Elasticsearch 用机器学习实现时序数据的异常检测(上)_机器学习_19
再次创建job
Elasticsearch 用机器学习实现时序数据的异常检测(上)_elasticsearch_20
Elasticsearch 用机器学习实现时序数据的异常检测(上)_json_21
获取一个新的数据结果
Elasticsearch 用机器学习实现时序数据的异常检测(上)_elasticsearch_22
Elasticsearch 用机器学习实现时序数据的异常检测(上)_elasticsearch_23
Elasticsearch 用机器学习实现时序数据的异常检测(上)_机器学习_24