• 基于八股文的形式编写mapreduce 程序
  • 打包jar 与测试运行处理
  • wordcount 为例 理解mapreduce 并行计算原理

基于八股文的形式编写mapreduce 程序

mapreduce java 代码

package org.apache.hadoop.studyhdfs.mapredce;
import java.io.IOException;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;

/**
 * 
 * @author zhangyy
 *
 */
public class WordCountMapReduce extends Configured implements Tool{
	
	// step 1: mapper class
	/**
	 * public class Mapper<KEYIN, VALUEIN, KEYOUT, VALUEOUT>
	 */
	public static class WordCountMapper extends //
		Mapper<LongWritable,Text,Text,IntWritable>{
		// map output value
		private final static IntWritable mapOutputValue = new IntWritable(1) ;
		// map output key
		private Text mapOutputKey = new Text();

		@Override
		public void map(LongWritable key, Text value, Context context)
				throws IOException, InterruptedException {
			System.out.println("map-input-key =" + key + " : map-input-value = " + value);
			
			// line value
			String lineValue = value.toString();
			
			// split
			String[] strs = lineValue.split(" ") ;
		
			// iterator
			for(String str: strs){
				// set map output key 
				mapOutputKey.set(str);
				
				// output
				context.write(mapOutputKey, mapOutputValue);
			}
		}
	}
	
	// step 2: reducer class
	/**
	 * public class Reducer<KEYIN,VALUEIN,KEYOUT,VALUEOUT>
	 */
	public static class WordCountReducer extends //
		Reducer<Text,IntWritable,Text,IntWritable>{

		private IntWritable outputValue = new IntWritable() ;

		
		@Override
		public void reduce(Text key, Iterable<IntWritable> values,
				Context context)
				throws IOException, InterruptedException {
			// temp: sum
			int sum = 0 ;
			
			// iterator
			for(IntWritable value: values){
				// total
				sum += value.get() ;
			}
			// set output value
			outputValue.set(sum);
			
			// output
			context.write(key, outputValue);
		}
		
	}
	
	
	// step 3: driver
	public int run(String[] args) throws Exception {
		// 1: get configuration
//		Configuration configuration = new Configuration();
		Configuration configuration = super.getConf() ;
				
		// 2: create job
		Job job = Job.getInstance(//
			configuration, //
			this.getClass().getSimpleName()//
		);
		job.setJarByClass(this.getClass());
		
		// 3: set job
		// input  -> map  -> reduce -> output
		// 3.1: input
		Path inPath = new Path(args[0]) ;
		FileInputFormat.addInputPath(job, inPath);
		
		// 3.2: mapper
		job.setMapperClass(WordCountMapper.class);
		job.setMapOutputKeyClass(Text.class);
		job.setMapOutputValueClass(IntWritable.class);

// ===========================Shuffle======================================		
		// 1) partitioner
//		job.setPartitionerClass(cls);
		// 2) sort
//		job.setSortComparatorClass(cls);
		// 3) combine
		job.setCombinerClass(WordCountReducer.class);
		// 4) compress
			// set by configuration
		// 5) group
//		job.setGroupingComparatorClass(cls);
// ===========================Shuffle======================================		
		
		// 3.3: reducer
		job.setReducerClass(WordCountReducer.class);
		job.setOutputKeyClass(Text.class);
		job.setOutputValueClass(IntWritable.class);
		// set reducer number
//		job.setNumReduceTasks(3);
		
		// 3.4: output
		Path outPath = new Path(args[1]);
		FileOutputFormat.setOutputPath(job, outPath);
		
		// 4: submit job 
		boolean isSuccess = job.waitForCompletion(true);
		
		return isSuccess ? 0 : 1 ;
	}
	
	public static void main(String[] args) throws Exception {
		
		// run job
//		int status = new WordCountMapReduce().run(args);
		
		// 1: get configuration
		Configuration configuration = new Configuration();
		
// ===============================Compress===================================
//		configuration.set("mapreduce.map.output.compress", "true");
//		configuration.set(name, value);
// ===============================Compress===================================
		
		int status = ToolRunner.run(//
			configuration, //
			new WordCountMapReduce(), //
			args
		) ;
		
		// exit program
		System.exit(status);
	}


}

打包成为jar 包

1.png-181.6kB

4.png-150.3kB

运行jar 包输出结果

10.png-183kB