本文是对pandas官方网站上《10 Minutes to pandas》的一个简单的翻译,原文在这里。这篇文章是对pandas的一个简单的介绍,详细的介绍请参考:Cookbook 。习惯上,我们会按下面格式引入所需要的包:


In [1]: import pandas as pd
In [2]: import numpy as np
In [3]: import matplotlib.pyplot as plt


一、            创建对象

可以通过 Data Structure Intro Setion 来查看有关该节内容的详细信息。

1、可以通过传递一个list对象来创建一个Seriespandas会默认创建整型索引:


In [4]: s = pd.Series([1,3,5,np.nan,6,8])
In [5]: s
Out[5]:
 0   1.0
 1   3.0
 2   5.0
 3   NaN
 4   6.0
 5   8.0
 dtype: float64

2、通过传递一个numpy array,时间索引以及列标签来创建一个DataFrame


In [6]: dates = pd.date_range('20130101', periods=6)
In [7]: dates
Out[7]: 
DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',
       '2013-01-05', '2013-01-06'],
       dtype='datetime64[ns]', freq='D')
In [8]: df = pd.DataFrame(np.random.randn(6,4), index=dates, columns=list('ABCD'))
In [9]: df
Out[9]: 
                  A      B     C     D
          2013-01-01  0.469112 -0.282863 -1.509059 -1.135632
          2013-01-02  1.212112 -0.173215  0.119209 -1.044236
          2013-01-03 -0.861849 -2.104569 -0.494929  1.071804
          2013-01-04  0.721555 -0.706771 -1.039575  0.271860
          2013-01-05 -0.424972  0.567020  0.276232 -1.087401
          2013-01-06 -0.673690  0.113648 -1.478427  0.524988

3、通过传递一个能够被转换成类似序列结构的字典对象来创建一个DataFrame


In [10]: df2 = pd.DataFrame({ 'A' : [1.],
   ....:                     'B' : pd.Timestamp('20130102'),  
   ....:                     'C' : pd.Series(1,index=list(range(4)),dtype='float32'),   
   ....:                     'D' : np.array([3] * 4,dtype='int32'),   
   ....:                     'E' : pd.Categorical(["test","train","test","train"]),   
   ....:                     'F' : 'foo' })   
   ....: 
 In [11]: df2
 Out[11]:      
      A      B    C   D    E    F
 0  1.0 2013-01-02  1.0  3   test  foo
 1  1.0 2013-01-02  1.0  3  train  foo
 2  1.0 2013-01-02  1.0  3   test  foo
 3  1.0 2013-01-02  1.0  3  train  foo

4、查看不同列的数据类型:


In [12]: df2.dtypes
Out[12]: 
A           float64
B       datetime64[ns]
C           float32
D            int32
E          category
F            object
dtype: object

5、如果你使用的是IPython,使用Tab自动补全功能会自动识别所有的属性以及自定义的列,下图中是所有能够被自动识别的属性的一个子集:


In [13]: df2.<TAB>
df2.A                  df2.bool
df2.abs                df2.boxplot
df2.add                df2.C
df2.add_prefix             df2.clip
df2.add_suffix             df2.clip_lower
df2.align               df2.clip_upper
df2.all                df2.columns
df2.any                df2.combine
df2.append               df2.combine_first
df2.apply               df2.compound
df2.applymap              df2.consolidate
df2.D

二、            查看数据

详情请参阅:Basics Section

 

1、  查看frame中头部和尾部的数据(默认5行):


In [14]: df.head()
Out[14]: 
           A         B    C       D
2013-01-01  0.469112 -0.282863 -1.509059 -1.135632
2013-01-02  1.212112 -0.173215  0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929  1.071804
2013-01-04  0.721555 -0.706771 -1.039575  0.271860
2013-01-05 -0.424972  0.567020  0.276232 -1.087401
In [15]: df.tail(3)
Out[15]:             
              A    B         C      D
2013-01-04  0.721555 -0.706771 -1.039575  0.271860
2013-01-05 -0.424972  0.567020  0.276232 -1.087401
2013-01-06 -0.673690  0.113648 -1.478427  0.524988

2、  显示索引、列和底层的numpy数据:


In [16]: df.index
Out[16]: DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04', 
                '2013-01-05', '2013-01-06'],              
                dtype='datetime64[ns]', freq='D')
In [17]: df.columns
Out[17]: Index(['A', 'B', 'C', 'D'], dtype='object')
In [18]: df.values
Out[18]: array([[ 0.4691, -0.2829, -1.5091, -1.1356],
            [ 1.2121, -0.1732,  0.1192, -1.0442],       
            [-0.8618, -2.1046, -0.4949,  1.0718],       
            [ 0.7216, -0.7068, -1.0396,  0.2719],       
            [-0.425 ,  0.567 ,  0.2762, -1.0874],       
            [-0.6737,  0.1136, -1.4784,  0.525 ]])

3、  describe()函数对于数据的快速统计汇总:


In [19]: df.describe()
Out[19]:  
             A         B      C       D
       count  6.000000  6.000000  6.000000  6.000000
       mean   0.073711  -0.431125  -0.687758  -0.233103
       std   0.843157  0.922818  0.779887  0.973118
       min   -0.861849  -2.104569  -1.509059  -1.135632
       25%   -0.611510  -0.600794  -1.368714  -1.076610
       50%   0.022070  -0.228039  -0.767252  -0.386188
       75%   0.658444  0.041933  -0.034326  0.461706
       max   1.212112  0.567020  0.276232  1.071804

4、  对数据的转置:

In [20]: df.T
Out[20]:
     2013-01-01  2013-01-02  2013-01-03  2013-01-04  2013-01-05  2013-01-06
A    0.469112    1.212112   -0.861849    0.721555   -0.424972   -0.673690
B   -0.282863   -0.173215   -2.104569   -0.706771    0.567020    0.113648
C   -1.509059    0.119209   -0.494929   -1.039575    0.276232   -1.478427
D   -1.135632   -1.044236    1.071804    0.271860   -1.087401    0.524988

5、  按轴进行排序

  • axis = 0代表的是行,也就是index。axis = 1代表的是列,也就是columns。

  • axis = 1,指的是沿着行进行运算,代表了横轴,那axis = 0,就是沿着列进行运算,代表了纵轴。

In [21]: df.sort_index(axis=1, ascending=False)
Out[21]: 
        D     C     B       A
2013-01-01 -1.135632 -1.509059 -0.282863  0.469112
2013-01-02 -1.044236  0.119209 -0.173215  1.212112
2013-01-03  1.071804 -0.494929 -2.104569 -0.861849
2013-01-04  0.271860 -1.039575 -0.706771  0.721555
2013-01-05 -1.087401  0.276232  0.567020 -0.424972
2013-01-06  0.524988 -1.478427  0.113648 -0.673690

6、  按值进行排序


In [22]: df.sort_values(by='B')
Out[22]:       
          A        B      C       D
2013-01-03 -0.861849 -2.104569 -0.494929  1.071804
2013-01-04  0.721555 -0.706771 -1.039575  0.271860
2013-01-01  0.469112 -0.282863 -1.509059 -1.135632
2013-01-02  1.212112 -0.173215  0.119209 -1.044236
2013-01-06 -0.673690  0.113648 -1.478427  0.524988
2013-01-05 -0.424972  0.567020  0.276232 -1.087401

三、 选择

虽然标准的Python/Numpy的选择和设置表达式都能够直接派上用场,但是作为工程使用的代码,我们推荐使用经过优化的pandas数据访问方式: .at.iat.loc.iloc  .ix详情请参阅Indexing and Selecing Data  MultiIndex / Advanced Indexing

很常用的但是原文中没说的一个查询:通过行号和列名定位单元格,比如取出第三行的pname字段的值,我的办法:

df.iloc[2].pname,如果你明确知道行索引可以用loc:df.loc[index].pname;最后是万能式:df.ix[2][pname]或df.ix[index][2],索引与列,均可为序号或名称

(一)获取

1、 选择一个单独的列,这将会返回一个Series,等同于df.A


In [23]: df['A']
Out[23]:
 2013-01-01    0.469112
 2013-01-02    1.212112
 2013-01-03   -0.861849
 2013-01-04    0.721555
 2013-01-05   -0.424972
 2013-01-06   -0.673690
 Freq: D, Name: A, dtype: float64

2、 通过[]进行选择,这将会对行进行切片

In [24]: df[0:3]
Out[24]:  
           A       B       C      D
2013-01-01  0.469112 -0.282863 -1.509059 -1.135632
2013-01-02  1.212112 -0.173215  0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929  1.071804
In [25]: df['20130102':'20130104']
Out[25]:    
           A       B        C      D
2013-01-02  1.212112 -0.173215  0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929  1.071804
2013-01-04  0.721555 -0.706771 -1.039575  0.271860

(二) 通过标签选择

更多阅读查看 Selection by Label

1、 使用标签来获取一个交叉的区域

In [26]: df.loc[dates[0]]
Out[26]: 
A   0.469112
B   -0.282863
C   -1.509059
D   -1.135632
Name: 2013-01-01 00:00:00, dtype: float64

2、 通过标签来在多个轴上进行选择

In [27]: df.loc[:,['A','B']]
Out[27]:       
          A         B
2013-01-01  0.469112 -0.282863
2013-01-02  1.212112 -0.173215
2013-01-03 -0.861849 -2.104569
2013-01-04  0.721555 -0.706771
2013-01-05 -0.424972  0.567020
2013-01-06 -0.673690  0.113648

3、 标签切片


In [28]: df.loc['20130102':'20130104',['A','B']]
Out[28]:     
           A        B
2013-01-02  1.212112 -0.173215
2013-01-03 -0.861849 -2.104569
2013-01-04  0.721555 -0.706771

4、对于返回的对象进行维度缩减


In [29]: df.loc['20130102',['A','B']]
Out[29]:
 A    1.212112
 B   -0.173215
 Name: 2013-01-02 00:00:00, dtype: float64

5、 获取一个标量


In [30]: df.loc[dates[0],'A']
Out[30]: 0.46911229990718628

6、 快速访问一个标量(与上一个方法等价)


In [31]: df.at[dates[0],'A']
Out[31]: 0.46911229990718628

(三)通过位置选择

1、 使用iloc通过传递数值(行号,不能是标签)进行位置选择(选择的是行)


In [32]: df.iloc[3]
Out[32]:
 A    0.721555
 B   -0.706771
 C   -1.039575
 D    0.271860
 Name: 2013-01-04 00:00:00, dtype: float64

2、 通过数值进行切片,与numpy/python中的情况类似


In [33]: df.iloc[3:5,0:2]
Out[33]:      
          A        B
2013-01-04  0.721555 -0.706771
2013-01-05 -0.424972  0.567020

3、 通过指定一个位置的列表,与numpy/python中的情况类似


In [34]: df.iloc[[1,2,4],[0,2]]
Out[34]:      
          A         C
2013-01-02  1.212112  0.119209
2013-01-03   -0.861849 -0.494929
2013-01-05  -0.424972  0.276232

4、 对行进行切片


In [35]: df.iloc[1:3,:]
Out[35]:          
          A       B        C       D
2013-01-02  1.212112 -0.173215  0.119209 -1.044236
2013-01-03  -0.861849 -2.104569 -0.494929  1.071804

5、 对列进行切片

In [36]: df.iloc[:,1:3]
Out[36]:       
        B       C
2013-01-01 -0.282863 -1.509059
2013-01-02 -0.173215  0.119209
2013-01-03 -2.104569 -0.494929
2013-01-04 -0.706771 -1.039575
2013-01-05  0.567020  0.276232
2013-01-06  0.113648 -1.478427

6、 获取特定的值


In [37]: df.iloc[1,1]
Out[37]: -0.17321464905330858

7、快速访问一个标量(等同于前面的方法)

In [38]: df.iat[1,1]
Out[38]: -0.17321464905330858

(四)布尔索引

1、 使用一个单独列的值来选择数据:

In [39]: df[df.A > 0]
Out[39]:         
           A       B        C       D
 2013-01-01  0.469112 -0.282863 -1.509059 -1.135632
 2013-01-02  1.212112 -0.173215  0.119209 -1.044236
 2013-01-04  0.721555 -0.706771 -1.039575  0.271860

2、(获取所有DataFrame中满足条件的数据

In [40]: df[df > 0]
Out[40]:       
         A         B        C      D
2013-01-01  0.469112       NaN       NaN     NaN
2013-01-02  1.212112       NaN       0.119209     NaN
2013-01-03     NaN       NaN       NaN  1.071804
2013-01-04  0.721555       NaN       NaN  0.271860
2013-01-05     NaN       0.567020       0.276232     NaN
2013-01-06     NaN       0.113648       NaN  0.524988

3、 使用isin()方法来过滤:

在索引index中搜索,这是最基本的查询了:

比如查询数据中是否有‘2013-01-01’ 这天的数据:
if len(df.query('index == "{0}"'.format('2013-01-01')) )>0:

In [41]: df2 = df.copy()
In [42]: df2['E'] = ['one', 'one','two','three','four','three']
In [43]: df2
Out[43]:        
            A      B       C      D      E
2013-01-01  0.469112 -0.282863 -1.509059 -1.135632    one
2013-01-02  1.212112 -0.173215  0.119209 -1.044236    one
2013-01-03  -0.861849 -2.104569 -0.494929  1.071804   two
2013-01-04  0.721555 -0.706771 -1.039575  0.271860   three
2013-01-05 -0.424972  0.567020  0.276232 -1.087401   four
2013-01-06 -0.673690  0.113648 -1.478427  0.524988  three
In [44]: df2[df2['E'].isin(['two','four'])]
Out[44]:          
          A        B     C       D      E
2013-01-03 -0.861849 -2.104569  -0.494929  1.071804   two
2013-01-05 -0.424972  0.567020  0.276232 -1.087401  four

(五)设置

按条件修改列值:

list(df['colName'].apply(lambda x:1 if x>np.mean(df(traindf['colName'])) else 0))#大于该列平均值则为1

1、 设置一个新的列:

In [45]: s1 = pd.Series([1,2,3,4,5,6], index=pd.date_range('20130102', periods=6))
In [46]: s1
Out[46]: 
2013-01-02    1
2013-01-03    2
2013-01-04    3
2013-01-05    4
2013-01-06    5
2013-01-07    6
Freq: D, dtype: int64
In [47]: df['F'] = s1

2、 通过标签设置新的值:


In [48]: df.at[dates[0],'A'] = 0

3、 通过位置设置新的值:


In [49]: df.iat[0,1] = 0

4、 通过一个numpy数组设置一组新值:


In [50]: df.loc[:,'D'] = np.array([5] * len(df))

5、上述操作结果如下:

In [51]: df
Out[51]:         
           A         B       C    D   F
2013-01-01  0.000000  0.000000  -1.509059  5  NaN
2013-01-02  1.212112  -0.173215  0.119209  5  1.0
2013-01-03  -0.861849  -2.104569  -0.494929  5  2.0
2013-01-04  0.721555  -0.706771  -1.039575  5  3.0
2013-01-05  -0.424972  0.567020  0.276232  5  4.0
2013-01-06  -0.673690  0.113648  -1.478427  5  5.0

6、通过where操作来设置新的值:

In [52]: df2 = df.copy()
In [53]: df2[df2 > 0] = -df2
In [54]: df2Out[54]:        
         A      B    C    D  F
2013-01-01  0.000000  0.000000 -1.509059 -5  NaN
2013-01-02 -1.212112 -0.173215 -0.119209 -5 -1.0
2013-01-03 -0.861849 -2.104569 -0.494929 -5 -2.0
2013-01-04 -0.721555 -0.706771 -1.039575 -5 -3.0
2013-01-05 -0.424972 -0.567020 -0.276232 -5 -4.0
2013-01-06 -0.673690 -0.113648 -1.478427 -5 -5.0

四、   缺失值处理

在pandas中,使用np.nan来代替缺失值,这些值将默认不会包含在计算中,详情请参阅:Missing Data Section

1、  reindex()方法可以对指定轴上的索引进行改变/增加/删除操作,这将返回原始数据的一个拷贝:

In [55]: df1 = df.reindex(index=dates[0:4], columns=list(df.columns) + ['E'])
In [56]: df1.loc[dates[0]:dates[1],'E'] = 1
In [57]: df1
Out[57]:         
           A         B       C  D   F   E
2013-01-01  0.000000  0.000000  -1.509059  5  NaN  1.0
2013-01-02  1.212112 -0.173215  0.119209  5  1.0  1.0
2013-01-03  -0.861849 -2.104569  -0.494929  5  2.0  NaN
2013-01-04  0.721555 -0.706771  -1.039575  5  3.0  NaN

2、  去掉包含缺失值的行:

In [58]: df1.dropna(how='any')
Out[58]:          
          A     B      C  D   F   E
2013-01-02  1.212112 -0.173215  0.119209  5  1.0  1.0

3、  对缺失值进行填充:


In [59]: df1.fillna(value=5)
Out[59]:         
           A         B       C  D   F    E
2013-01-01  0.000000  0.000000  -1.509059  5  5.0  1.0
2013-01-02  1.212112 -0.173215  0.119209  5  1.0  1.0
2013-01-03  -0.861849 -2.104569  -0.494929  5  2.0  5.0
2013-01-04  0.721555 -0.706771  -1.039575  5  3.0  5.0

4、  对数据进行布尔填充:

In [60]: pd.isna(df1)
Out[60]:      
           A    B     C     D     F    E
2013-01-01  False  False  False  False  True   False
2013-01-02  False  False  False  False  False  False
2013-01-03  False  False  False  False  False   True
2013-01-04  False  False  False  False  False   True

五、相关操作

详情请参与 Basic Section On Binary Ops

(一) 统计(相关操作通常情况下不包括缺失值)

1、  执行描述性统计:

In [61]: df.mean()
Out[61]: 
A   -0.004474
B   -0.383981
C   -0.687758
D    5.000000
F    3.000000
dtype: float64

2、  在其他轴上进行相同的操作:


In [62]: df.mean(1)
Out[62]: 
2013-01-01    0.872735
2013-01-02    1.431621
2013-01-03    0.707731
2013-01-04    1.395042
2013-01-05    1.883656
2013-01-06    1.592306
Freq: D, dtype: float64

3、  对于拥有不同维度,需要对齐的对象进行操作。Pandas会自动的沿着指定的维度进行广播:


In [63]: s = pd.Series([1,3,5,np.nan,6,8], index=dates).shift(2)
In [64]: s
Out[64]: 
2013-01-01    NaN
2013-01-02    NaN
2013-01-03    1.0
2013-01-04    3.0
2013-01-05    5.0
2013-01-06    NaN
Freq: D, dtype: float64
In [65]: df.sub(s, axis='index')
Out[65]:        
              A         B         C   D    F
2013-01-01       NaN       NaN       NaN  NaN  NaN
2013-01-02       NaN       NaN       NaN  NaN  NaN
2013-01-03    -1.861849    -3.104569    -1.494929  4.0  1.0
2013-01-04    -2.278445    -3.706771    -4.039575  2.0  0.0
2013-01-05    -5.424972    -4.432980    -4.723768  0.0 -1.0
2013-01-06       NaN       NaN       NaN  NaN  NaN

(二)应用

1、  对数据应用函数:


In [66]: df.apply(np.cumsum)
Out[66]:       
             A       B      C   D    F
2013-01-01  0.000000  0.000000 -1.509059   5   NaN
2013-01-02  1.212112 -0.173215 -1.389850  10   1.0
2013-01-03  0.350263 -2.277784 -1.884779  15   3.0
2013-01-04  1.071818 -2.984555 -2.924354  20   6.0
2013-01-05  0.646846 -2.417535 -2.648122  25  10.0
2013-01-06  -0.026844 -2.303886 -4.126549  30  15.0
In [67]: df.apply(lambda x: x.max() - x.min())
Out[67]: 
A    2.073961
B    2.671590
C    1.785291
D    0.000000
F    4.000000
dtype: float64

(三)  直方图

具体请参照:Histogramming and Discretization

In [68]: s = pd.Series(np.random.randint(0, 7, size=10))
In [69]: s
Out[69]: 
0    4
1    2
2    1
3    2
4    6
5    4
6    4
7    6
8    4
9    4
dtype: int64
In [70]: s.value_counts()
Out[70]: 
4    5
6    2
2    2
1    1
dtype: int64

(四) 字符串方法

Series对象在其str属性中配备了一组字符串处理方法,可以很容易的应用到数组中的每个元素,如下段代码所示。更多详情请参考:Vectorized String Methods.

In [71]: s = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 'cat'])
In [72]: s.str.lower()
Out[72]: 
0       a
1       b
2       c
3    aaba
4    baca
5     NaN
6    caba
7     dog
8     cat
dtype: object
六、   合并

Pandas提供了大量的方法能够轻松的对Series,DataFrame和Panel对象进行各种符合各种逻辑关系的合并操作。具体请参阅:Merging section

(一)  连接

把一个字典插入表中形成新的一列:df['列名'][dict.keys()] = dict.values()

删除一列:del df['列名']

In [73]: df = pd.DataFrame(np.random.randn(10, 4))
In [74]: df
Out[74]:  
       0       1      2      3
0 -0.548702  1.467327 -1.015962 -0.483075
1  1.637550 -1.217659 -0.291519 -1.745505
2 -0.263952  0.991460 -0.919069  0.266046
3 -0.709661  1.669052  1.037882 -1.705775
4 -0.919854 -0.042379  1.247642 -0.009920
5  0.290213  0.495767  0.362949  1.548106
6 -1.131345 -0.089329  0.337863 -0.945867
7 -0.932132  1.956030  0.017587 -0.016692
8 -0.575247  0.254161 -1.143704  0.215897
9  1.193555 -0.077118 -0.408530 -0.862495
# break it into pieces
In [75]: pieces = [df[:3], df[3:7], df[7:]]
In [76]: pd.concat(pieces)
Out[76]:  
      0       1      2        3
0  -0.548702  1.467327 -1.015962  -0.483075
1  1.637550  -1.217659 -0.291519  -1.745505
2  -0.263952  0.991460 -0.919069  0.266046
3  -0.709661  1.669052  1.037882  -1.705775
4  -0.919854  -0.042379  1.247642  -0.009920
5  0.290213  0.495767  0.362949  1.548106
6  -1.131345  -0.089329  0.337863  -0.945867
7  -0.932132  1.956030  0.017587  -0.016692
8  -0.575247  0.254161 -1.143704  0.215897
9  1.193555  -0.077118 -0.408530  -0.862495

(二)连接

Join 类似于SQL类型的合并,具体请参阅:Database style joining

In [77]: left = pd.DataFrame({'key': ['foo', 'foo'], 'lval': [1, 2]})
In [78]: right = pd.DataFrame({'key': ['foo', 'foo'], 'rval': [4, 5]})
In [79]: left
Out[79]: 
   key     lval
0  foo     1
1  foo     2
In [80]: right
Out[80]: 
   key     rval
0  foo     4
1  foo     5
In [81]: pd.merge(left, right, on='key')
Out[81]: 
   key     lval     rval
0  foo     1     4
1  foo     1     5
2  foo     2     4
3  foo     2     5

另一个能够展示的例子:

In [82]: left = pd.DataFrame({'key': ['foo', 'bar'], 'lval': [1, 2]})
In [83]: right = pd.DataFrame({'key': ['foo', 'bar'], 'rval': [4, 5]})
In [84]: left
Out[84]: 
   key   lval
0  foo     1
1  bar     2
In [85]: right
Out[85]: 
   key   rval
0  foo     4
1  bar     5
In [86]: pd.merge(left, right, on='key')
Out[86]: 
   key    lval  rval
0  foo     1     4
1  bar     2     5

(三)附加

 Append 将一行连接到一个DataFrame上,具体请参阅Appending


In [87]: df = pd.DataFrame(np.random.randn(8, 4), columns=['A','B','C','D'])
In [88]: df
Out[88]:  
       A       B       C       D
0  1.346061  1.511763  1.627081  -0.990582
1  -0.441652  1.211526  0.268520  0.024580
2  -1.577585  0.396823  -0.105381  -0.532532
3  1.453749  1.208843  -0.080952  -0.264610
4  -0.727965  -0.589346  0.339969  -0.693205
5  -0.339355  0.593616  0.884345  1.591431
6  0.141809  0.220390  0.435589  0.192451
7  -0.096701  0.803351  1.715071  -0.708758
In [89]: s = df.iloc[3]
In [90]: df.append(s, ignore_index=True)
Out[90]:  
         A       B       C       D
  0  1.346061  1.511763  1.627081  -0.990582
  1  -0.441652  1.211526  0.268520  0.024580
  2  -1.577585  0.396823  -0.105381  -0.532532
  3  1.453749  1.208843  -0.080952  -0.264610
  4  -0.727965  -0.589346  0.339969  -0.693205
  5  -0.339355  0.593616  0.884345  1.591431
  6  0.141809  0.220390  0.435589  0.192451
  7  -0.096701  0.803351  1.715071  -0.708758
  8  1.453749  1.208843  -0.080952  -0.264610

七、            分组

对于”group by”操作,我们通常是指以下一个或多个操作步骤:

l  (Splitting)按照一些规则将数据分为不同的组;

l  (Applying)对于每组数据分别执行一个函数;

l  (Combining)将结果组合到一个数据结构中;

详情请参阅:Grouping section

In [91]: df = pd.DataFrame({'A' : ['foo', 'bar', 'foo', 'bar',   
   ....:                           'foo', 'bar', 'foo', 'foo'],   
   ....:                    'B' : ['one', 'one', 'two', 'three',   
   ....:                           'two', 'two', 'one', 'three'],   
   ....:                    'C' : np.random.randn(8),   
   ....:                    'D' : np.random.randn(8)})   
   ....: 
   In [92]: df
   Out[92]:  
       A      B       C       D
   0  foo    one  -1.202872  -0.055224
   1  bar    one  -1.814470  2.395985
   2  foo    two  1.018601  1.552825
   3  bar   three  -0.595447  0.166599
   4  foo    two  1.395433  0.047609
   5  bar    two  -0.392670  -0.136473
   6  foo    one  0.007207  -0.561757
   7  foo  three  1.928123   -1.623033

1、  分组并对每个分组执行sum函数:


In [93]: df.groupby('A').sum()
Out[93]:    
      C        D
A                     
bar  -2.802588  2.42611
foo  3.146492  -0.63958

2、  通过多个列进行分组形成一个层次索引,然后执行函数:

In [94]: df.groupby(['A','B']).sum()
Out[94]: 
           C         D
 A   B                        
 bar one   -1.814470  2.395985    
     three  -0.595447  0.166599    
     two   -0.392670  -0.136473
 foo one   -1.195665  -0.616981    
     three  1.928123  -1.623033    
     two    2.414034  1.600434

八、 重塑

详情请参阅 Hierarchical Indexing  Reshaping

(一)栈

In [95]: tuples = list(zip(*[['bar', 'bar', 'baz', 'baz', 
  ....:                      'foo', 'foo', 'qux', 'qux'],   
  ....:                     ['one', 'two', 'one', 'two',   
  ....:                      'one', 'two', 'one', 'two']]))   
  ....: 
In [96]: index = pd.MultiIndex.from_tuples(tuples, names=['first', 'second'])
In [97]: df = pd.DataFrame(np.random.randn(8, 2), index=index, columns=['A', 'B'])In [98]: df2 = df[:4]
In [99]: df2
Out[99]:    
              A         B
first second                    
bar   one     0.029399  -0.542108      
       two     0.282696  -0.087302
baz   one    -1.575170  1.771208
     two     0.816482  1.100230

stack()函数 “压缩” 数据桢的列一个级别.

In [100]: stacked = df2.stack()
In [101]: stacked
Out[101]: 
first  second   
bar    one     A    0.029399
            B    -0.542108       
      two     A    0.282696               
                   B    -0.087302
baz    one     A    -1.575170  
            B    1.771208
      two     A    0.816482               
                   B    1.100230
dtype: float64

被“堆叠”数据桢或序列(有多个索引作为索引), 其stack()的反向操作是unstack(), 上面的数据默认反堆叠到上一级别:

In [102]: stacked.unstack()
Out[102]: 
                     A         B
first second                    
bar   one     0.029399 -0.542108 
     two     0.282696 -0.087302
baz   one    -1.575170  1.771208     
       two     0.816482  1.100230
In [103]: stacked.unstack(1)
Out[103]: 
second        one       two
first                      
bar   A  0.029399  0.282696      
       B -0.542108 -0.087302
baz   A -1.575170  0.816482     
       B  1.771208  1.100230
In [104]: stacked.unstack(0)
Out[104]: 
first        bar      baz
second                      
one    A  0.029399  -1.575170   
       B  -0.542108  1.771208
two    A  0.282696  0.816482   
       B  -0.087302  1.100230

(二)数据透视表,详情请参阅:Pivot Tables.

In [105]: df = pd.DataFrame({'A' : ['one', 'one', 'two', 'three'] * 3, 
  .....:                    'B' : ['A', 'B', 'C'] * 4,
  .....:                    'C' : ['foo', 'foo', 'foo', 'bar', 'bar', 'bar'] * 2,   
  .....:                    'D' : np.random.randn(12),   
  .....:                    'E' : np.random.randn(12)})   
  .....: 
In [106]: df
Out[106]: 
        A  B    C         D         E
  0     one  A  foo  1.418757 -0.179666
  1     one  B  foo  -1.879024  1.291836
  2     two  C  foo  0.536826  -0.009614
  3    three  A  bar  1.006160  0.392149
  4     one  B  bar  -0.029716  0.264599
  5     one  C  bar  -1.146178  -0.057409
  6     two  A  foo   0.100900  -1.425638
  7    three  B  foo  -1.035018  1.024098
  8     one  C  foo   0.314665  -0.106062
  9     one  A  bar  -0.773723  1.824375
  10     two  B  bar   -1.170653  0.595974
  11    three  C  bar   0.648740  1.167115

可以从这个数据中轻松的生成数据透视表:

In [107]: pd.pivot_table(df, values='D', index=['A', 'B'], columns=['C'])
Out[107]:
 C         bar       foo
 A     B                    
 one   A -0.773723  1.418757       
        B -0.029716  -1.879024      
        C -1.146178  0.314665
 three  A  1.006160      NaN      
        B     NaN  -1.035018      
        C  0.648740     NaN
 two   A     NaN  0.100900 
      B -1.170653     NaN      
      C     NaN  0.536826

九、时间序列

pandas有易用,强大且高效的函数用于高频数据重采样转换操作(例如,转换秒数据到5分钟数据), 这是很普遍的情况,但并不局限于金融应用, 请参阅时间序列章节

In [108]: rng = pd.date_range('1/1/2012', periods=100, freq='S')
In [109]: ts = pd.Series(np.random.randint(0, 500, len(rng)), index=rng)
In [110]: ts.resample('5Min').sum()
Out[110]: 
2012-01-01    25083
Freq: 5T, dtype: int64

时区表示

In [111]: rng = pd.date_range('3/6/2012 00:00', periods=5, freq='D')
In [112]: ts = pd.Series(np.random.randn(len(rng)), rng)
In [113]: ts
Out[113]:
 2012-03-06    0.464000
 2012-03-07    0.227371
 2012-03-08   -0.496922
 2012-03-09    0.306389
 2012-03-10   -2.290613
 Freq: D, dtype: float64
 In [114]: ts_utc = ts.tz_localize('UTC')
 In [115]: ts_utc
 Out[115]: 
 2012-03-06 00:00:00+00:00    0.464000
 2012-03-07 00:00:00+00:00    0.227371
 2012-03-08 00:00:00+00:00   -0.496922
 2012-03-09 00:00:00+00:00    0.306389
 2012-03-10 00:00:00+00:00   -2.290613
 Freq: D, dtype: float64

转换到其它时区

In [116]: ts_utc.tz_convert('US/Eastern')
Out[116]:
2012-03-05 19:00:00-05:00    0.464000
2012-03-06 19:00:00-05:00    0.227371
2012-03-07 19:00:00-05:00    -0.496922
2012-03-08 19:00:00-05:00    0.306389
2012-03-09 19:00:00-05:00    -2.290613
Freq: D, dtype: float64

转换不同的时间跨度

In [117]: rng = pd.date_range('1/1/2012', periods=5, freq='M')
In [118]: ts = pd.Series(np.random.randn(len(rng)), index=rng)
In [119]: ts
Out[119]: 
2012-01-31   -1.134623
2012-02-29   -1.561819
2012-03-31   -0.260838
2012-04-30    0.281957
2012-05-31    1.523962
Freq: M, dtype: float64
In [120]: ps = ts.to_period()
In [121]: ps
Out[121]: 
2012-01   -1.134623
2012-02   -1.561819
2012-03   -0.260838
2012-04    0.281957
2012-05    1.523962
Freq: M, dtype: float64
In [122]: ps.to_timestamp()
Out[122]: 
2012-01-01   -1.134623
2012-02-01   -1.5618192
012-03-01   -0.260838
2012-04-01    0.281957
2012-05-01    1.523962
Freq: MS, dtype: float64

转换时段并且使用一些运算函数, 下例中, 我们转换年报11月到季度结束每日上午9点数据

In [123]: prng = pd.period_range('1990Q1', '2000Q4', freq='Q-NOV')
In [124]: ts = pd.Series(np.random.randn(len(prng)), prng)
In [125]: ts.index = (prng.asfreq('M', 'e') + 1).asfreq('H', 's') + 9
In [126]: ts.head()
Out[126]: 
1990-03-01 09:00   -0.902937
1990-06-01 09:00    0.068159
1990-09-01 09:00   -0.057873
1990-12-01 09:00   -0.368204
1991-03-01 09:00   -1.144073
Freq: H, dtype: float64
十、分类     

从0.15版本开始,pandas可以在DataFrame中支持Categorical类型的数据,详细 介绍参看:categorical introductionAPI documentation

In [127]: df = pd.DataFrame({"id":[1,2,3,4,5,6], "raw_grade":['a', 'b', 'b', 'a', 'a', 'e']})

1、  将原始的grade转换为Categorical数据类型:

In [128]: df["grade"] = df["raw_grade"].astype("category")
In [129]: df["grade"]
Out[129]: 
0    a
1    b
2    b
3    a
4    a
5    e
Name: grade, dtype: category
Categories (3, object): [a, b, e]

2、  将Categorical类型数据重命名为更有意义的名称:

In [130]: df["grade"].cat.categories = ["very good", "good", "very bad"]

3、  对类别进行重新排序,增加缺失的类别:

In [131]: df["grade"] = df["grade"].cat.set_categories(["very bad", "bad", "medium", "good", "very good"])In [132]: df["grade"]
Out[132]: 
0    very good
1        good
2        good
3    very good
4    very good
5     very bad
Name: grade, dtype: category
Categories (5, object): [very bad, bad, medium, good, very good]
4、  排序是按照Categorical的顺序进行的而不是按照字典顺序进行:
In [133]: df.sort_values(by="grade")
Out[133]: 
   id     raw_grade     grade
5   6         e   very bad
1   2         b      good
2   3         b      good
0   1         a  very good
3   4         a  very good
4   5         a  very good

5、  对Categorical列进行排序时存在空的类别:

In [134]: df.groupby("grade").size()
Out[134]: 
grade
very bad     1
bad          0
medium       0
good         2
very good    3
dtype: int64
十一、           画图

具体文档参看:Plotting docs

In [135]: ts = pd.Series(np.random.randn(1000), index=pd.date_range('1/1/2000', periods=1000))
In [136]: ts = ts.cumsum()
In [137]: ts.plot()
Out[137]: <matplotlib.axes._subplots.AxesSubplot at 0x1122ad630>

十分钟搞定pandas(持续更新中)_python

对于DataFrame来说,plot是一种将所有列及其标签进行绘制的简便方法:

In [138]: df = pd.DataFrame(np.random.randn(1000, 4), index=ts.index,
  .....:                   columns=['A', 'B', 'C', 'D'])   
  .....: 
In [139]: df = df.cumsum()
In [140]: plt.figure(); df.plot(); plt.legend(loc='best')
Out[140]: <matplotlib.legend.Legend at 0x115033cf8>

十分钟搞定pandas(持续更新中)_python_02

十二、           导入和保存数据

(一) CSV,参考:Writing to a csv file

1、  写入csv文件:

In [141]: df.to_csv('foo.csv')

2、  从csv文件中读取:

In [142]: pd.read_csv('foo.csv')
Out[142]: 
     Unnamed: 0          A          B         C          D
0    2000-01-01   0.266457  -0.399641 -0.219582   1.186860
1    2000-01-02  -1.170732  -0.345873  1.653061  -0.282953
2    2000-01-03  -1.734933   0.530468  2.060811  -0.515536
3    2000-01-04  -1.555121   1.452620  0.239859  -1.156896
4    2000-01-05   0.578117   0.511371  0.103552  -2.428202
5    2000-01-06   0.478344   0.449933 -0.741620  -1.962409
6    2000-01-07   1.235339  -0.091757 -1.543861  -1.084753
..          
...        
...        
...       
...        
...
993  2002-09-20 -10.628548  -9.153563 -7.883146  28.313940
994  2002-09-21 -10.390377  -8.727491 -6.399645  30.914107
995  2002-09-22  -8.985362  -8.485624 -4.669462  31.367740
996  2002-09-23  -9.558560  -8.781216 -4.499815  30.518439
997  2002-09-24  -9.902058  -9.340490 -4.386639  30.105593
998  2002-09-25 -10.216020  -9.480682 -3.933802  29.758560
999  2002-09-26 -11.856774 -10.671012 -3.216025  29.369368
[1000 rows x 5 columns]

(二)HDF5,参考:HDFStores

1、  写入HDF5存储:

In [143]: df.to_hdf('foo.h5','df')

2、  从HDF5存储中读取:

In [144]: pd.read_hdf('foo.h5','df')
Out[144]: 
               A        B      C        D
 2000-01-01   0.266457  -0.399641 -0.219582   1.186860
 2000-01-02  -1.170732  -0.345873  1.653061  -0.282953
 2000-01-03  -1.734933   0.530468  2.060811  -0.515536
 2000-01-04  -1.555121   1.452620  0.239859  -1.156896
 2000-01-05   0.578117   0.511371  0.103552  -2.428202
 2000-01-06   0.478344   0.449933 -0.741620  -1.962409
 2000-01-07   1.235339  -0.091757 -1.543861  -1.084753
 ...               
 ...        
 ...       
 ...        
 ...
 2002-09-20 -10.628548  -9.153563 -7.883146  28.313940
 2002-09-21 -10.390377  -8.727491 -6.399645  30.914107
 2002-09-22  -8.985362  -8.485624 -4.669462  31.367740
 2002-09-23  -9.558560  -8.781216 -4.499815  30.518439
 2002-09-24  -9.902058  -9.340490 -4.386639  30.105593
 2002-09-25 -10.216020  -9.480682 -3.933802  29.758560
 2002-09-26 -11.856774 -10.671012 -3.216025  29.369368
 [1000 rows x 4 columns]

(三)Excel,参考:MS Excel

1、  写入excel文件:

In [145]: df.to_excel('foo.xlsx', sheet_name='Sheet1')

2、  从excel文件中读取:

In [146]: pd.read_excel('foo.xlsx', 'Sheet1', index_col=None, na_values=['NA'])
Out[146]:    
              A        B      C        D
2000-01-01   0.266457  -0.399641 -0.219582   1.186860
2000-01-02  -1.170732  -0.345873  1.653061  -0.282953
2000-01-03  -1.734933   0.530468  2.060811  -0.515536
2000-01-04  -1.555121   1.452620  0.239859  -1.156896
2000-01-05   0.578117   0.511371  0.103552  -2.428202
2000-01-06   0.478344   0.449933 -0.741620  -1.962409
2000-01-07   1.235339  -0.091757 -1.543861  -1.084753
...               
...        
...       
...        
...
2002-09-20 -10.628548  -9.153563 -7.883146  28.313940
2002-09-21 -10.390377  -8.727491 -6.399645  30.914107
2002-09-22  -8.985362  -8.485624 -4.669462  31.367740
2002-09-23  -9.558560  -8.781216 -4.499815  30.518439
2002-09-24  -9.902058  -9.340490 -4.386639  30.105593
2002-09-25 -10.216020  -9.480682 -3.933802  29.758560
2002-09-26 -11.856774 -10.671012 -3.216025  29.369368
[1000 rows x 4 columns]