1、内容简介
略
406-可以交流、咨询、答疑
2、内容说明
略
具体实现原理可以找下其他的文章,
3、仿真分析
clc
close all
clear
fcmdata = xlsread('数据.xlsx',1,'B2:J15');
[U,P,Dist,Cluster_Res,Obj_Fcn,iter]=fuzzycm(fcmdata,4)
function [U,P,Dist,Cluster_Res,Obj_Fcn,iter]=fuzzycm(Data,C,plotflag,M,epsm)
% 模糊 C 均值聚类 FCM: 从随机初始化划分矩阵开始迭代
% [U,P,Dist,Cluster_Res,Obj_Fcn,iter] = fuzzycm(Data,C,plotflag,M,epsm)
% 输入:
% Data: N×S 型矩阵,聚类的原始数据,即一组有限的观测样本集,
% Data 的每一行为一个观测样本的特征矢量,S 为特征矢量
% 的维数,N 为样本点的个数
% C: 聚类数,1
% plotflag: 聚类结果 2D/3D 绘图标记,0 表示不绘图,为缺省值
% M: 加权指数,缺省值为 2
% epsm: FCM 算法的迭代停止阈值,缺省值为 1.0e-6
% 输出:
% U: C×N 型矩阵,FCM 的划分矩阵
% P: C×S 型矩阵,FCM 的聚类中心,每一行对应一个聚类原型
% Dist: C×N 型矩阵,FCM 各聚类中心到各样本点的距离,聚类中
% 心 i 到样本点 j 的距离为 Dist(i,j)
% Cluster_Res: 聚类结果,共 C 行,每一行对应一类
% Obj_Fcn: 目标函数值
% iter: FCM 算法迭代次数
% See also: fuzzydist maxrowf fcmplot
if nargin<5
epsm=1.0e-6;
end
if nargin<4
M=2;
end
if nargin<3
plotflag=0;
end
[N,S]=size(Data);m=2/(M-1);iter=0;
Dist(C,N)=0; U(C,N)=0; P(C,S)=0;
% 随机初始化划分矩阵
U0 = rand(C,N);
U0=U0./(ones(C,1)*sum(U0));
% FCM 的迭代算法
while true
% 迭代计数器
iter=iter+1;
% 计算或更新聚类中心 P
Um=U0.^M;
P=Um*Data./(ones(S,1)*sum(Um'))';
% 更新划分矩阵 U
for i=1:C
for j=1:N
Dist(i,j)=fuzzydist(P(i,:),Data(j,:));
end
end
U=1./(Dist.^m.*(ones(C,1)*sum(Dist.^(-m))));
% 目标函数值: 类内加权平方误差和
if nargout>4 | plotflag
Obj_Fcn(iter)=sum(sum(Um.*Dist.^2));
end
% FCM 算法迭代停止条件
if norm(U-U0,Inf) break
end
U0=U;
end
% 聚类结果
if nargout > 3
res = maxrowf(U);
for c = 1:C
v = find(res==c);
Cluster_Res(c,1:length(v))=v;
end
end
% 绘图
if plotflag
fcmplot(Data,U,P,Obj_Fcn);
end
4、参考论文
略