俗话话说的号,没有金刚钻,也不揽那瓷器活;日志分析可以说是所有大小系统的标配了,不知道有多少菜鸟程序员有多喜欢日志,如果没了日志,那自己写的bug想不被别人发现,可就难了; 有了它,就可将bug们统统消化在自己手里。
当然了,作为一个架构师搭建动手搭建一个日志平台也基本是必备技能了,虽然我们说架构师基本不咋写代码了,但是如果需要的时候,还是能扛枪的
ELK部署应用与工作机制
3.1 ELK日志分析平台介绍
ELK是三个开源软件的缩写,分别表示:Elasticsearch , Logstash和Kibana。Elasticsearch和Kibana我们上面做过讲解。 Logstash 主要是用来日志的搜集、分析、过滤日志的工具,适用大数据量场景, 一般采用c/s模式,client端安装在需要收集日志的主机上,server端负责将收到的各节点日志进行过滤、修改等操作, 再一并发往Elasticsearch上做数据分析。
一个完整的集中式日志系统,需要包含以下几个主要特点:
- 收集-能够采集多种来源的日志数据
- 传输-能够稳定的把日志数据传输到中央系统
- 存储-如何存储日志数据
- 分析-可以支持 UI 分析
- 警告-能够提供错误报告,监控机制
ELK提供了一整套解决方案,并且都是开源软件,之间互相配合使用,完美衔接,高效的满足了很多场合的应用,是目前主流的一种日志分析平台。
3.2 ELK部署架构模式
3.2.1 简单架构
这是最简单的一种ELK部署架构方式, 由Logstash分布于各个节点上搜集相关日志、数据,并经过分析、过滤后发送给远端服务器上的Elasticsearch进行存储。 优点是搭建简单, 易于上手, 缺点是Logstash耗资源较大, 依赖性强, 没有消息队列缓存, 存在数据丢失隐患
3.2.2 消息队列架构
该队列架构引入了KAFKA消息队列, 解决了各采集节点上Logstash资源耗费过大, 数据丢失的问题, 各终端节点上的Logstash Agent 先将数据/日志传递给Kafka, 消息队列再将数据传递给Logstash, Logstash过滤、分析后将数据传递给Elasticsearch存储, 由Kibana将日志和数据呈现给用户。
3.2.3 BEATS架构
该架构的终端节点采用Beats工具收集发送数据, 更灵活,消耗资源更少,扩展性更强。同时可配置Logstash 和Elasticsearch 集群用于支持大集群系统的运维日志数据监控和查询, 官方也推荐采用此工具, 本章我们采用此架构模式进行配置讲解(如果在生产环境中, 可以再增加kafka消息队列, 实现了beats+消息队列的部署架构 )。
Beats工具包含四种:
1、Packetbeat(搜集网络流量数据)
2、Topbeat(搜集系统、进程和文件系统级别的 CPU 和内存使用情况等数据)
3、Filebeat(搜集文件数据)
4、Winlogbeat(搜集 Windows 事件日志数据)
3.3 ELK工作机制
3.3.1 Filebeat工作机制
Filebeat由两个主要组件组成:prospectors 和 harvesters。这两个组件协同工作将文件变动发送到指定的输出中。
Harvester(收割机):负责读取单个文件内容。每个文件会启动一个Harvester,每个Harvester会逐行读取各个文件,并将文件内容发送到制定输出中。Harvester负责打开和关闭文件,意味在Harvester运行的时候,文件描述符处于打开状态,如果文件在收集中被重命名或者被删除,Filebeat会继续读取此文件。所以在Harvester关闭之前,磁盘不会被释放。默认情况filebeat会保持文件打开的状态,直到达到close_inactive
filebeat会在指定时间内将不再更新的文件句柄关闭,时间从harvester读取最后一行的时间开始计时。若文件句柄被关闭后,文件发生变化,则会启动一个新的harvester。关闭文件句柄的时间不取决于文件的修改时间,若此参数配置不当,则可能发生日志不实时的情况,由scan_frequency参数决定,默认10s。Harvester使用内部时间戳来记录文件最后被收集的时间。例如:设置5m,则在Harvester读取文件的最后一行之后,开始倒计时5分钟,若5分钟内文件无变化,则关闭文件句柄。默认5m】。
Prospector(勘测者):负责管理Harvester并找到所有读取源。
Prospector会找到/apps/logs/*目录下的所有info.log文件,并为每个文件启动一个Harvester。Prospector会检查每个文件,看Harvester是否已经启动,是否需要启动,或者文件是否可以忽略。若Harvester关闭,只有在文件大小发生变化的时候Prospector才会执行检查。只能检测本地的文件。
Filebeat如何记录发送状态:
将文件状态记录在文件中(默认在/var/lib/filebeat/registry)。此状态可以记住Harvester收集文件的偏移量。若连接不上输出设备,如ES等,filebeat会记录发送前的最后一行,并再可以连接的时候继续发送。Filebeat在运行的时候,Prospector状态会被记录在内存中。Filebeat重启的时候,利用registry记录的状态来进行重建,用来还原到重启之前的状态。每个Prospector会为每个找到的文件记录一个状态,对于每个文件,Filebeat存储唯一标识符以检测文件是否先前被收集。
Filebeat如何保证数据发送成功:
Filebeat之所以能保证事件至少被传递到配置的输出一次,没有数据丢失,是因为filebeat将每个事件的传递状态保存在文件中。在未得到输出方确认时,filebeat会尝试一直发送,直到得到回应。若filebeat在传输过程中被关闭,则不会再关闭之前确认所有时事件。任何在filebeat关闭之前未确认的事件,都会在filebeat重启之后重新发送。这可确保至少发送一次,但有可能会重复。可通过设置shutdown_timeout 参数来设置关闭之前的等待事件回应的时间(默认禁用)。
3.3.2 Logstash工作机制
Logstash事件处理有三个阶段:inputs → filters → outputs。是一个接收,处理,转发日志的工具。支持系统日志,webserver日志,错误日志,应用日志等。
Input:输入数据到logstash。
支持的输入类型:
file:从文件系统的文件中读取,类似于tail -f命令
syslog:在514端口上监听系统日志消息,并根据RFC3164标准进行解析
redis:从redis service中读取
beats:从filebeat中读取
Filters:数据中间处理,对数据进行操作。
一些常用的过滤器为:
grok:解析任意文本数据,Grok 是 Logstash 最重要的插件。它的主要作用就是将文本格式的字符串,转换成为具体的结构化的数据,配合正则表达式使用。内置120多个解析语法。
mutate:对字段进行转换。例如对字段进行删除、替换、修改、重命名等。
drop:丢弃一部分events不进行处理。
clone:拷贝 event,这个过程中也可以添加或移除字段。
geoip:添加地理信息(为前台kibana图形化展示使用)
Outputs:outputs是logstash处理管道的最末端组件。
一个event可以在处理过程中经过多重输出,但是一旦所有的outputs都执行结束,这个event也就完成生命周期。
常见的outputs为:
elasticsearch:可以高效的保存数据,并且能够方便和简单的进行查询。
file:将event数据保存到文件中。
graphite:将event数据发送到图形化组件中,一个很流行的开源存储图形化展示的组件。
Codecs:codecs 是基于数据流的过滤器,它可以作为input,output的一部分配置。 Codecs可以帮助你轻松的分割发送过来已经被序列化的数据。 常见的codecs:
json:使用json格式对数据进行编码/解码。
multiline:将多个事件中数据汇总为一个单一的行。比如:java异常信息和堆栈信息。
3.4 Logstash安装配置
在192.168.116.141机器节点上进行安装:
- 下载解压
下载:
- 解压:
- 创建数据存储与日志记录目录
- 修改配置文件:
- 配置内容:
- 创建监听配置文件:
- 配置:
- 启动服务:
以root用户身份执行:
- 成功启动后会显示以下日志:
- 访问地址:http://192.168.116.141:9600/, 可以看到返回信息:
3.5 Filebeat安装配置
在192.168.116.141机器节点上操作:
- 下载解压
与ElasticSearch版本一致, 下载7.10.2版本。
- 解压:
- 修改配置文件
- 修改内容:
- 启动服务
- 启动成功后显示日志:
- 我们监听的是/var/log/messages系统日志信息, 当日志发生变化后, filebeat会通过logstash上报到Elasticsearch中。 我们可以查看下集群的全部索引信息:
http://192.168.116.140:9200/_cat/indices?v
可以看到, 已经生成了名为logstash-2021.07.20-000001索引。
3.6 Kibana配置与查看数据
- 进入Kibana后台, 进行配置:
http://192.168.116.140:5601 - 进入【Management】--> 在Index Pattern中输入"logstash-*" --> 点击【next step】, 选择"@timestamp",
- 点击【 Create index pattern 】进行创建。
- 查看数据
进入【Discover】, 可以查看到收集的数据:
如果没有显示, 可以重新调整Time Range时间范围。
本文由育博学谷狂野架构师发布如果本文对您有帮助,欢迎关注和点赞;如果您有任何建议也可留言评论或私信,您的支持是我坚持创作的动力转载请注明出处!