所谓模型剪枝,其实是一种从神经网络中移除"不必要"权重或偏差(weigths/bias)的模型压缩技术。本文深入描述了 pytorch 框架的几种剪枝 API,包括函数功能和参数定义,并给出示例代码。
近年来主流的模型压缩方法包括:数值量化(Data Quantization,也叫模型量化),模型稀疏化(Model sparsification,也叫模型剪枝 Model Pruning),知识蒸馏(Knowledge Distillation), 轻量化网络设计(Lightweight Network Design)和 张量分解(Tensor Decomposition)。 其中模型剪枝是一种应用非常广的模型压缩方法,其可以直接减少模型中的参数量。本文会对模型剪枝的定义、发展历程、分类以及算法原理进行详细的介绍。
模型压缩算法旨在将一个大模型转化为一个精简的小模型。工业界的模型压缩方法有:知识蒸馏、轻量化模型架构、剪枝、量化。
终端设备上运行深度学习算法需要考虑内存和算力的需求,因此需要进行模型复杂度分析,涉及到模型计算量(时间/计算复杂度)和模型参数量(空间复杂度)分析。
模型量化是指将神经网络的浮点算法转换为定点。量化有一些相似的术语,低精度(Low precision)可能是常见的。 低精度模型表示模型权重数值格式为 FP16(半精度浮点)或者 INT8(8位的定点整数),但是目前低精度往往就指代 INT8。 常规精度模型则一般表示模型权重数值格式为 FP32(32位浮点,单精度)。 混合精度(Mixed precision)则在模型中同时使用 FP32 和 FP16 的权重数值格式。 FP16 减少了一半的内存大小。
在一定程度上,网络越深,参数越多,模型越复杂,其最终效果越好。神经网络的压缩算法是,旨在将一个庞大而复杂的预训练模型(pre-trained model)转化为一个精简的小模型。 按照压缩过程对网络结构的破坏程度,我们将模型压缩技术分为“前端压缩”和“后端压缩”两部分。
深度学习和计算机视觉方向除了算法训练/研究,还有两个重要的方向: 模型压缩(模型优化、量化)、模型部署(模型转换、后端功能SDK开发)。所谓模型部署,即将算法研究员训练出的模型部署到具体的端边云芯片平台上,并完成特定业务的视频结构化应用开发。
ONNX 的本质只是一套开放的 ML 模型标准,模型文件存储的只
TensorRT 是 NVIDIA 官方推出的基于 CUDA 和 cudnn 的高性能深度学习推理加速引擎,能够使深度学习模型在 GPU 上进行低延迟、高吞吐量的部署。采用 C++ 开发,并提供了 C++ 和 Python 的 API 接口,支持 TensorFlow、Pytorch、Caffe、Mxnet 等深度学习框架,其中 Mxnet、Pytorch 的支持需要先转换为中间模型 ONNX 格式。截止到 2021.4.21 日, TensorRT 最新版本为 v7.2.3.4。
Copyright © 2005-2025 51CTO.COM 版权所有 京ICP证060544号