Task:

  1. 使用Cli Demo实现InternLM2-Chat-1.8B模型部署,并生成300字小故事。
  2. 使用LMDeploy完成InternLM-XComposer2-VL-1.8B部署,完成一次图文理解对话。
  3. 使用LMDeploy完成InternVL2-2B的部署,完成一次图文理解对话。

1 Task1

使用Cli Demo实现InternLM2-Chat-1.8B模型部署,并生成300字小故事。

创建torch环境,在jupyter notebook中执行命令安装环境:

!pip install transformers==4.38 -i https://pypi.tuna.tsinghua.edu.cn/simple
!pip install sentencepiece==0.1.99 -i https://pypi.tuna.tsinghua.edu.cn/simple
!pip install einops==0.8.0 -i https://pypi.tuna.tsinghua.edu.cn/simple
!pip install protobuf==5.27.2 -i https://pypi.tuna.tsinghua.edu.cn/simple
!pip install accelerate==0.33.0 -i https://pypi.tuna.tsinghua.edu.cn/simple
!pip install streamlit==1.37.0 -i https://pypi.tuna.tsinghua.edu.cn/simple
!pip install modelscope -i https://pypi.tuna.tsinghua.edu.cn/simple

下载模型:

from modelscope import snapshot_download
model_dir = snapshot_download('jayhust/internlm2-chat-1_8b')
model_dir

导入预训练模型,加载模型:

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

model_path = '/data/coding/demo/internlm2-chat-1_8b'
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True, device_map='cuda:0')
model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True, device_map='cuda:0', torch_dtype= torch.bfloat16)
model = model.eval()

system_prompt = """You are an AI assistant whose name is InternLM (书生·浦语).
- InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.
- InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such as English and 中文.
"""
messages = [(system_prompt, '')]

print("=============Welcome to InternLM chatbot, type 'exit' to exit.=============")
while True:
    input_text = input("\nUser  >>> ")
    input_text = input_text.replace(' ', '')
    if input_text == "exit":
        break
    length = 0

    for response, _ in model.stream_chat(tokenizer, input_text, messages):
        if response is not None:
            print(response[length:], flush=True, end="")
            length = len(response)

执行截图:

InternLM2-Chat模型部署_人工智能

2 Task2

使用LMDeploy完成InternLM-XComposer2-VL-1.8B部署,完成一次图文理解对话。

LMDeploy 是一个用于压缩、部署和服务 LLM 的工具包,具有以下核心功能:

  • 高效的推理:LMDeploy 通过引入持久化批处理、块 KV 缓存、动态分割与融合、张量并行、高性能 CUDA 内核等关键技术,提供了比 vLLM 高 1.8 倍的推理性能。
  • 有效的量化:LMDeploy 支持仅权重量化和 k/v 量化,4bit 推理性能是 FP16 的 2.4 倍。量化后模型质量已通过 OpenCompass 评估确认。
  • 轻松的分发:利用请求分发服务,LMDeploy 可以在多台机器和设备上轻松高效地部署多模型服务。
  • 交互式推理模式:通过缓存多轮对话过程中注意力的 k/v,推理引擎记住对话历史,从而避免重复处理历史会话。
  • 优秀的兼容性:LMDeploy支持 KV Cache Quant,AWQ 和自动前缀缓存同时使用。

安装环境:

!pip install lmdeploy[all]==0.5.1 -i https://pypi.tuna.tsinghua.edu.cn/simple

!pip install timm==1.0.7 -i https://pypi.tuna.tsinghua.edu.cn/simple

下载模型:

from modelscope import snapshot_download

model_dir = snapshot_download('Shanghai_AI_Laboratory/internlm-xcomposer2-vl-1_8b',cache_dir='/data/coding/demo')

model_dir

解决huggingface.co无法访问的问题:

import os
os.environ["HF_ENDPOINT"] = "https://hf-mirror.com"

部署模型:

!lmdeploy serve gradio /data/coding/demo/Shanghai_AI_Laboratory/internlm-xcomposer2-vl-1_8b --cache-max-entry-count 0.1

执行结果截图: ![[书生大模型/基础岛/pic/Pasted image 20240731095903.png]]

3 Task3

使用LMDeploy完成InternVL2-2B的部署,完成一次图文理解对话。

模型需经过申请才可下载,申请链接:[[https://www.modelscope.cn/models/OpenGVLab/InternVL2-2B/files]]

导入自己的token,认证:

from modelscope.hub.api import HubApi

api = HubApi()
api.login('XXXXXX')

下载模型:

# 下载模型

from modelscope import snapshot_download
model_dir = snapshot_download('OpenGVLab/InternVL2-2B',cache_dir='/data/coding/demo')
model_dir

部署,执行模型:

!lmdeploy serve gradio /data/coding/demo/OpenGVLab/InternVL2-2B --cache-max-entry-count 0.1

执行截图:

InternLM2-Chat模型部署_人工智能_02